Бесплатная библиотека стандартов и нормативов www.docload.ru

Все документы, размещенные на этом сайте, не являются их официальным изданием и предназначены исключительно для ознакомительных целей.
Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.
Это некоммерческий сайт и здесь не продаются документы. Вы можете скачать их абсолютно бесплатно!
Содержимое сайта не нарушает чьих-либо авторских прав! Человек имеет право на информацию!

 

МИНИСТЕРСТВО АВТОМОБИЛЬНЫХ ДОРОГ РСФСР

РУКОВОДСТВО
ПО ОЦЕНКЕ ПРОПУСКНОЙ
СПОСОБНОСТИ
АВТОМОБИЛЬНЫХ ДОРОГ

МОСКВА «ТРАНСПОРТ» 1982

 

ВВЕДЕНИЕ

Пропускная способность зависит от большого числа факторов: дорожных условий (ширины проезжей части, продольного уклона, радиуса кривых в плане, расстояния видимости и др.), состава потока автомобилей, наличия средств регулирования, погодно-климатических условий, возможности маневрирования автомобилей по ширине проезжей части, психофизиологических особенностей водителей и конструкции автомобилей. Изменение из этих факторов приводит к существенным колебаниям пропускной способности в течение суток, месяца, сезона и года. При частом расположении помех на дороге происходят значительные колебания скорости, приводящие к появлению большого числа автомобилей, движущихся в группах, а также снижению средней скорости всего потока.

На пропускную способность маршрута в целом существенно влияет время, затрачиваемое на преодоление узких мест отдельных участков дороги. Продолжительность этого времени может меняться от нескольких десятков секунд на регулируемых пересечениях до нескольких минут на затяжных подъемах и железнодорожных переездах. Увеличение этого времени может резко изменить пропускную способность и создать заторы, а также увеличить протяжение участка, на котором сказывается влияние затора на режим движения автомобилей. Поэтому снижение продолжительности преодоления узких мест позволяет улучшить условия движения не только в их зоне, но и в целом по дороге, повысить ее пропускную способность.

Определение пропускной способности необходимо не только для выявления участков, требующих улучшения условий движения, но и для оценки экономичности и удобства движения всего потока автомобилей по маршруту, выбора эффективных средств организации движения. Любая дорога может работать при загрузках различной интенсивности. При этом предельной будет интенсивность, соответствующая пропускной способности дороги. Эффективность транспортной работы дороги может характеризоваться как пропускной способностью, так и интенсивностью, при которой движение по дороге наиболее экономично и оптимально по условиям работы водителя.

Пропускная способность автомобильных дорог может быть повышена:

1) проектированием сочетания элементов плана и продольного профиля, не вызывающих резкого изменения скоростей;

2) назначением ширины проезжей части, позволяющей разделить поток автомобилей по составу (дополнительные полосы на подъемах, на пересечениях в одном уровне) и обеспечивающей оптимальную загрузку, при которой движение происходит с достаточно высокими скоростями;

3) повышением ровности покрытия и его сцепных качеств;

4) реконструкцией пересечений в одном уровне (например, устройство разных типов канализированных пересечений) или устройством пересечений о разных уровнях;

5) выбором средств регулирования, обеспечивающих рациональный режим движения;

6) снабжением водителей полной информацией об условиях движения по маршруту;

7) улучшением работы дорожно-эксплуатационной службы, особенно зимой.

Существенное увеличение пропускной способности дорог можно достигнуть путем повышения динамических качеств автомобилей, особенно их приемистости (возможности быстро набирать скорость с места), и мастерства водителей. Повышая пропускную способность, можно добиться и увеличения скоростей с одновременным обеспечением безопасности движения. Это будет способствовать значительному повышению производительности автомобильного транспорта.

Учитывая сложность определения пропускной способности и ее зависимость от большого числа факторов, в Руководстве приведены не только общий метод оценки пропускной способности, но и методы, позволяющие детальнее учитывать условия движения на наиболее сложных участках дорог.

Раздел 1
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДВИЖЕНИЯ ПОТОКА АВТОМОБИЛЕЙ

общие положения

1.1. На пропускную способность влияет большое число факторов, зависящих от технических параметров дороги и автомобилей. Поэтому для получения надежных данных о пропускной способности должны быть учтены показатели, характеризующие взаимодействие между автомобилями в потоке в различных дорожных условиях.

1.2. Транспортные потоки характеризуются: интенсивностью, составом, скоростью, интервалами между автомобилями, плотностью потока. Вследствие взаимодействия автомобилей в потоке все эти характеристики функционально связаны друг с другом.

интенсивность движения

1.3. При использовании данных, основывающихся на учете часовой интенсивности движения в различные периоды года, обоснования мероприятий по организации движения, оценки уровня удобства движения, инженерных мероприятий по повышению безопасности движения и пропускной способности, за расчетную принимают часовую интенсивность движения Nmax, составляющую 0,8 от максимальной Nmax, т. е. Nн =0,8 Nmax.

Расчетная часовая интенсивность движения

,                                                              (1.1)

где Nс - среднегодовая суточная интенсивность движения в обоих направлениях, авт./сут.

1.4. Разрабатывая мероприятия, повышающие пропускную способность отдельных элементов дорог с ярко выраженным различием условий движения по направлениям (например, подъемы, пересечения в одном уровне и т. д.), необходимо учитывать эту неравномерность. Коэффициент неравномерности распределения интенсивности, движения по направлениям в среднем можно принять равным 0,6. Тогда расчетная часовая интенсивность движения:

                                        (1.2)

1.5. При обосновании оптимальной загрузки дороги (см. приложение 2) и планировании стадийных мероприятий, повышающих пропускную способность (см. раздел 6), необходимо устанавливать не только интенсивность движения на начальный и конечный годы перспективного периода, но и динамику ее изменения по годам по отношению к начальному году.

1.6. Перспективную интенсивность движения необходимо прогнозировать исходя из анализа материалов экономических изысканий, данных учета за последние 10-15 лет и народнохозяйственного значения района проложения дороги.

Можно использовать следующие закономерности изменения интенсивности движения: а) по закону прямой с постоянным коэффициентом прироста; б) по геометрической прогрессии с постоянными темпами роста в течение расчетного периода; в) по геометрической прогрессии с убывающими темпами роста.

При изменении интенсивности по годам по закону прямой интенсивность t-го года .

.                                             (1.3)

При изменении интенсивности по закону геометрической прогрессии интенсивность t-го года

,                                             (1.4)

где N1 - интенсивность движения в начальном году, авт./сут; рN - средний ежегодный процент прироста интенсивности движения, установленный по данным учета движения за период не менее 10-15 лет; t - число лет до конца перспективы; q - коэффициент ежегодного роста интенсивности; DN - ежегодный прирост интенсивности движения, авт./сут.

Уравнения (1.3) и (1.4) целесообразно применять при расчете интенсивности на дорогах IV и V категории. На дорогах II категории по этим формулам следует осуществлять краткосрочный прогноз интенсивности для целей организации движения на период до 5 лет.

При загрузке дороги движением свыше 0,5 от размера пропускной способности для прогнозов интенсивности следует применять закономерность с убывающими темпами роста

,                                      (1.5)

где Тc - расчетный срок перспективы, лет; а¢ и b¢ - эмпирические коэффициенты, зависящие от первоначального темпа относительного прироста интенсивности движения.

Первоначальный темп, %....... 10            12          14          16          18               20

a¢....... 3,7           3,1         2,5         1,9         1,3              0,7

b¢....... 6,3           8,9         11,5       14,1       16,7            19,3

1.7. При известных законах роста интенсивности, расчетной перспективе, исходной интенсивности и параметрах, характеризующих ежегодный прирост, перспективную интенсивность любого года целесообразно определять по номограммам (рис. 1.1-1.3).

состав движения

1.8. Состав движения существенно влияет на пропускную способность и выбор мероприятий по повышению пропускной способности. Его необходимо учитывать при всех расчетах, связанных с оценкой уровней удобства и пропускной способности. Состав движения на дороге определяют на основе непосредственного учета движения, анализа народнохозяйственного значения района проложения дороги и перспектив его развития, анализа парка автопредприятий, расположенных в зоне влияния дороги.

1.9. Для технико-экономических расчетов, связанных с определением оптимальной загрузки дорог, необходима детализация состава движения по моделям автомобилей с учетом их грузоподъемности (см. п. 2.4).

скорости движения

1.10. Следует различать скорости движения: расчетную, мгновенную (на определенном участке дороги), эксплуатационную и техническую.

Расчетная скорость - максимальная безопасная скорость одиночных легковых автомобилей, обеспечиваемая дорогой при хорошей видимости, на ровном и шероховатом покрытии, в сухую погоду. На эту скорость рассчитываются все геометрические элементы при разработке проекта.

Мгновенная скорость - наблюдаемая в конкретном створе дороги. Различают мгновенные скорости 15, 50 и 85% обеспеченности (см. ВСН 25-76 Мннавтодора РСФСР). Скорость 15% обеспеченности показывает скорость медленно движущихся автомобилей. Скорость 50% обеспеченности соответствует средней мгновенной скорости всех автомобилей в транспортном потоке.

Скорость 85% обеспеченности показывает скорость, которую не превышает основная часть потока автомобилей. Эта скорость обычно используется при выборе средств организации движения и введении ограничения скоростей.

Эксплуатационная скорость (скорость сообщения) - средняя на рассматриваемом маршруте или участке дороги с учетом задержек, получаемая делением пути на продолжительность проезда (время сообщения).

Техническая скорость - средняя на рассматриваемом маршруте или участке дороги без учета задержек и остановок в пути.

Рис. 1.1. Номограмма для определения перспективной интенсивности движения при линейном ежегодном приросте интенсивности

Рис. 1.2. Номограмма для определения перспективной интенсивности движения при ежегодном приросте интенсивности по геометрической прогрессии с постоянными темпами роста

Скорость свободного движения - скорость при отсутствии взаимного влияния автомобилей (сказывается влияние только дорожных условий).

1.11. Скорости движения могут быть установлены путем их измерения на выделенных створах (мгновенные скорости) или путем проезда испытательного автомобиля в составе транспортного потока с измерением в характерных местах дороги по протарированному спидометру (см. ВСН 25-76 Минавтодора РСФСР) или записи с помощью аппаратуры для измерения режимов движения.

интервалы между автомобилями

1.12. Интервалы между автомобилями могут меняться в очень широких пределах, даже при высокой интенсивности движения. Как во времени, так и по расстоянию интервалы являются характеристиками, от которых зависит пропускная способность полосы движения. На размер интервалов влияют скорость и интенсивность движения. Существенное перераспределение интервалов наблюдается при появлении в потоке грузовых автомобилей или автобусов, имеющих низкие скорости.

1.13. Как во времени, так и по расстоянию интервалы измеряют между передними бамперами переднего и заднего автомобилей.

Рис. 1.3. Номограмма для определения перспективной интенсивности движения при ежегодном приросте интенсивности по геометрической прогрессии с убывающими темпами роста

При оценке максимальной пропускной способности пересечении в одном уровне и участков переплетения и слияния рассматривают интервалы во времени и размер граничного интервала, который принимается большинством водителей при выполнении маневров.

Интервалы, принимаемые водителями:

При пересечении потоков, с                  9-14 (в среднем 12)

»     слиянии              »          с                 3,5-6 (»      »       5)

»     переплетении    »          с                 2-6          »       4)

плотность движения потока автомобилей

1.14 Плотность движения - число автомобилей на единицу длины дороги (обычно на 1 км); ее измеряют числом автомобилей на 1 км дороги.

1.15. Связь между основными характеристиками потока автомобилей

,                                                            (1.6)

где N - интенсивность движения, авт/ч; v - скорость, км/ч; q - плотность потока авт./км.

Эта связь графически выражена зависимостью интенсивность - плотность (рис. 1.4). Максимум кривой соответствует пропускной способности.

Рис. 1.4. Пример зависимости интенсивность - плотность

1.16. Понятие о плотности движения используют при оценке пропускной способности в различных дорожных условиях (см. приложение 1).

пропускная способность

1.17. Пропускная способность - максимальное число автомобилей, которое может пропустить участок в единицу времени в одном или двух направлениях в рассматриваемых дорожных и погодно-климатических условиях.

1.18. Следует различать: теоретическую, практическую к расчетную пропускные способности.

1.19. Теоретическую пропускную способность Рт определяют расчетом для горизонтального участка дороги, считая постоянными интервалы между автомобилями и однородным составом транспортного потока (состоящим только из легковых автомобилей). Теоретическая пропускная способность полосы автомобильной магистрали составляет около 2900 легковых авт/ч.

1.20. Под практической понимают пропускную способность, которая обеспечивается на дорогах в реальных условиях движения. Различают два вида практической пропускной способности: максимальную Рmax наблюдаемую на этапном участке; практическую Р в конкретных дорожных условиях.

1.21. Эталонный участок с максимальной практической пропускной способностью Рmax характеризуется следующими дорожными условиями - имеются горизонтальные прямолинейные участки, расстояние между пересечениями более 5 км; полос движения не менее двух; ширина полосы 3,75; укрепленные обочины шириной 3 м; расстояние видимости превышает 800 м; сухое покрытие ровное. шероховатое; транспортный поток состоит только из легковых автомобилей - на обочинах отсутствуют боковые препятствия, снижающие скорость; благоприятные погодно-климатические условия.

1.22. Практическая пропускная способность Р соответствует пропускной способности участков, имеющих худшие условия по сравнению с эталонным участком (см. п. 1.21).

1.23. Расчетная пропускная способность характеризует экономически целесообразное число автомобилей, которое может пропустить в единицу времени участок в рассматриваемых дорожных условиях при принятой схеме организации движения.

1.24. Расчетная пропускная способность рассматривается как проектный показатель в совокупности с расчетной интенсивностью движения, который служит основой для назначения размеров геометрических элементов дорог и их сочетаний и обеспечивает на расчетную 20-летнюю перспективу оптимальные параметры работы дороги в специфических погодно-климатических условиях рассматриваемого района проектирования.

1.25. Показатель расчетной пропускной способности обосновывают расчетом.

Рис. 1.5. Зависимость максимальной практической пропускной способности от скорости движения для дорог

Таблица 1.1

Вид дороги

Категория рельефа по СНиПу

Кр в зависимости от категории дороги

I

II

III

IV

V

Подходы к крупным городам

1

0,80

0,92

0,99

1,00

1,00

2

0,75

0,87

0,95

0,99

1,00

3

0,65

0,77

0,86

0,94

1,00

Дороги промышленных зон и районов

1

0,90

0,96

0,99

1,00

1,00

2

0,80

0,90

0,97

1,00

1,00

3

-

0,79

0,90

0,96

1,00

Дороги сельскохозяйственных районов

1

-

0,90

0,98

1,00

1,00

2

-

0,85

0,92

0,97

1,00

3

-

-

-

0,93

0,98

Дороги курортных районов

1

0,71

0,82

0,92

0,98

1,00

2

0,65

0,77

0,87

0,95

0,99

3

0,55

0,68

0,80

0,90

0,95

Принимают во внимание погодно-климатические условия, условия формирования интенсивности движения на дороге, характеристик рельефа местности; интенсивность и состав движения.

1.26. Расчетная пропускная способность

,                                                          (1.7)

где kр - коэффициент перехода от теоретической пропускной способности к расчетной; Рт - теоретическая пропускная способность, легковых авт/ч.

Значения коэффициентов kр приведены в табл. 1.1.

1.27. Пропускная способность зависит от скорости движения, обеспечиваемой дорогой (рис. 1.5).

характеристика уровней удобства движения

1.28. Состояние потока автомобилей и условия движения на дороге характеризуются уровнем удобства движения, являющимся комплексным показателей экономичности, удобства и безопасности движения. Основными характеристиками уровней удобства являются: коэффициент загрузки движения z, коэффициент скорости с, коэффициент насыщения движением r.

Коэффициент загрузки движением

,                                                            (1.8)

где N - интенсивность движения (существующая пли перспективная), легковых авт/ч;

P - практическая пропускная способность, легковых авт/ч.

Коэффициент скорости движения

,                                                             (1.9)

где vz - средняя скорость движения при рассматриваемом уровне удобства, км/ч; v0 - скорость движения в свободных условиях при уровне удобства А, км/ч.

Коэффициент насыщения движением

,                                                       (1.10)

где qz - средняя плотность движения при рассматриваемом уровне, авт/км; qmax - максимальная плотность движения, авт/км.

1.29. Различают четыре уровня удобства движения на дорогах, характеристика которых приведена в табл. 1.2.

Таблица 1.2

Уровень удобства движением

z

с

r

Характеристика потока автомобилей

Состояние потока

Эмоциональная загрузка водителя

Удобство работы водителя

Экономическая эффективность работы дороги

А

<0,2

>0,9

<0,1

Автомобили движутся в свободных условиях, взаимодействие между автомобилями отсутствует

Свободное

Низкая

Удобно

Неэффективная

Б

0,2-0,45

0,7-0,9

0,1-0,3

Автомобили движутся группами совершается много обгонов

Частично связанное

Нормальная

Мало удобно

Мало эффективная

В

0,45-0,7

0,55-0,7

0,3-0,7

В потоке еще существуют большие интервалы между автомобилями, обгоны затруднены

Связанное

Высокая

Неудобно

Эффективная

Г-а

0,7-1

0,4-0,55

0,7-1,0

Сплошной поток автомобилей, движущихся с малыми скоростями

Насыщенное

Очень высокая

Очень неудобно

Неэффективная

Г-б

£1

£0,4

1,0

Поток движется с остановками, возникают заторы

Плотное насыщенное

То же

То же

То же

Уровень удобства А

1.30. Уровень удобства А соответствует условиям, при которых отсутствует взаимодействие между автомобилями. Водители свободны в выборе скоростей максимальные скорости на горизонтальном участке более 70 км/ч. Максимальная интенсивность движения не превышает 20% от пропускной способности.

1.31. Скорость практически не снижается с ростом интенсивности движения (рис. 1.6).

1.32. По мере увеличения загрузки число дорожно-транспортных происшествий несколько уменьшается (рис. 1.7), но практически все они имеют тяжелые последствия.

Уровень удобства Б

1.33. При уровне удобства Б проявляется взаимодействие между автомобилями, возникают отдельные группы автомобилей, увеличивается число обгонов. При верхней границе уровня Б число обгонов наибольшее. Максимальная скорость на горизонтальном участке составляет примерно 80% от скорости в свободных условиях, максимальная интенсивность - 50% от пропускной способности.

1.34. Скорости движения быстро снижаются по мере роста интенсивности (рис. 1.6).

1.35. Число дорожно-транспортных происшествий увеличивается с ростом интенсивности движения (рис. 1.7).

Уровень удобства В

1.36. При уровне удобства В происходит дальнейший рост интенсивности движения, что приводит к появлению колонн автомобиле». Число обгонов сокращается по мере приближения интенсивности к предельной для данного уровня. Максимальная скорость на горизонтальном участке составляет 70% от скорости в свободных условиях; отмечаются колебания интенсивности движения в течение часа. Максимальная интенсивность составляет 75% от пропускной способности.

1.37. С ростом интенсивности движения скорости снижаются незначительно (см. рис. 1.6).

1.38. Общее число дорожно-транспортных происшествий увеличивается с ростом интенсивности движения (см. рис. 1.7).

Уровень удобства Г

1.39. Уровень удобства Г разделяют на два подуровня (Г-а и Г-б), которые характеризуют изменение движения плотного потока автомобилей при интенсивности, близкой и равной пропускной способности.

Уровень удобства Г-а

1.40. При уровне удобства Г-а создается колонное движение с небольшими разрывами между колоннами. Обгоны отсутствуют. Между проходами автомобилей в потоке преобладают интервалы меньше 2 с. Наибольшая скорость составляет 50-55% от скорости в свободных условиях. Максимальная интенсивность движения равна пропускной способности; наблюдается значительное колебание интенсивности в течение часа.

1.41. Скорости движения с ростом интенсивности меняются незначительно (рис. 1.6).

1.42. Число дорожно-транспортных происшествии непрерывно увеличивается (рис. 1.7) и начинает несколько снижаться при интенсивности движения, близкой к пропускной способности.

Уровень удобства Г-б

1.43. При уровне удобства Г-б автомобили движутся непрерывной колонной с частыми остановками; скорость в периоды их движения составляет 35-40% от скорости в свободных условиях, а при заторах равна нулю. Интенсивность меняется от нуля до интенсивности, равной пропускной способности.

1.44. Число дорожно-транспортных происшествий уменьшается по сравнению с другими уровнями. Снижаются также их тяжесть и величина потерь.

Рис. 1.6. Изменение средней скорости с ростом загрузки дороги

Рис. 1.7. Изменение аварийности с ростом загрузки дороги

Таблица 1.3

Число полос движения (в оба направления)

Средние скорости движения потока автомобилей, км/ч

Число дорожно-транспортных происшествий на 1 млн. авт-км

2

v = 52 - (0,019 - 0,00014рл)N + 0,22рл

a=0,1922×10-2N-0,0633×10-4N-2+0,014×10-6N3

4

v = 59- (0,011 - 0,00012рл)N + 0,21рл

а =0,45+0,62×10-4N

6

v = 62- (0,008 - 0,00010рл)N + 0,20 рл

а =0,38+1,6×10-4N

8

v = 64- (0,006 - 0,00008рл)N + 0,19рл

а =0,36+0,58×10-4N

Примечание. Приведенные в табл. 1.3 формулы применены при z³0,8; pл - для легковых автомобилей в потоке, %; N - интенсивность движения в обоих направлениях. авт/ч.

1.45. При расчетах оптимального уровня удобства (см. приложение 2) средние скорости v и среднюю аварийность а следует вычислять с учетом рекомендаций табл. 1.3.

Более детальный расчет скоростей и других характеристик транспортных потоков может быть выполнен с помощью ЭВМ (см. приложения 15, 16, 17 и 18).

1.46. Уровни удобства, характеризующие изменение взаимодействия автомобилей в транспортном потоке, следует использовать для обоснования числа полос движения как на всей дороге, так и на ее отдельных участках (в первую очередь на тех, где в дальнейшем будет затруднена реконструкция: большие мосты, участки, проходящие через плотную застройку; участки с высокими насыпями и др.); для обоснования ширины полосы отвода; при разработке стадийных мероприятий по повышению пропускной способности; для выбора средств регулирования движения (см. раздел 6); при установлении предельной интенсивности для рассматриваемой категории дорог с учетом района ее проложения и движения на ней.

1.47. Уровень удобства движения может меняться по длине дороги и для каждого участка в течение суток, месяца, года. Расчеты следует проводить на оптимальный уровень удобства (средний для всей дороги или ее участка).

1.48. При проектировании и эксплуатации дорог необходимо обеспечивать оптимальный уровень удобства движения дороги каждой категории. Рекомендуемые уровни удобства движения для разных дорог приведены в табл. 1.4. Порядок расчета оптимального уровня удобства в приложении 2.

Таблица 1.4

Тип автомобильной дороги

zопт

Рекомендуемый уровень удобства

Критерий определения zопт

новое проектирование

реконструкция

Подъезды к аэропортам, морским и речным причалам

0,2

0,5

А

минимизация времена сообщения

Внегородские автомобильные магистрали (дороги I категории)

0,45

0,6

Б

минимум приведенных затрат

Входы в города, обходы и кольцевые дороги вокруг больших городов

0,55

0,65

В

То же

Автомобильные дороги II-III категорий

0,65

0,7

Г

»

Автомобильные дороги IV категории

0,7

0,75

Г

»

Раздел 2
МЕТОДЫ ОЦЕНКИ ПРОПУСКНОЙ СПОСОБНОСТИ ДОРОГ

общие методы расчета

2.1. При оценке практической пропускной способности в конкретных дорожных условиях рекомендуется использовать уравнение:

,                                                              (2.1)

где В - итоговый коэффициент снижения пропускной способности, равный произведению частных коэффициентов (см. п. 2.4) b=b1, b2, b3, … - b15; Рmах - максимальная практическая пропускная способность, легковых авт/ч (см. п. 2.3).

2.2. При оценке практической пропускной способности в реальных дорожных условиях для целей организации движения следует пользоваться уравнением:

,                                                             (2.2)

где w - коэффициент, зависящий от загрузки встречной полосы движения (w=1,3 при малой загрузке встречной полосы z£0,4; w=1 при равном распределении интенсивности по встречным полосам; w=0,99 при высокой загрузке встречной полосы z³0,4), a - коэффициент, зависящий от дорожных условий и типа дорог; v0 - скорость движения в свободных условиях на рассматриваемом участке, км/ч; qmax=L/l - максимальная плотность движения на рассматриваемом участке, авт/км; L - длина участка; l - интервал между автомобилями.

Максимальную плотность смешанного транспортного потока устанавливают с учетом интервалов между автомобилями и их габаритов. Для удобства определения qmax следует ввести средний расчетный интервал lрасч, представляющий собой сумму дистанций между автомобилями и длину участка, занимаемого передним автомобилем.

При разнородном составе потока средний интервал следует определять с учетом возможного сочетания стоящих друг за другом автомобилей:

,                      (2.3)

где рл, рг,. ра - фактическая вероятность появления легкового, грузового автомобиля и автомобильного поезда (определяют по данным учета движения или задают составом движения); lла, lлг, lаг - интервалы между типами автомобилей с учетом их длины.

Таблица 2.1

Тип задних автомобилей

lрасч, м, для автомобилей

легковых

грузовых

автопоездов

Легковые

7,3

9,3

13,2

Грузовые

9,0

9,7

14,1

Автопоезда

13,0

14,2

17,3

Таблица 2.2

Автомобильная дорога

Ширина, м

b1

полосы

проезжей части

Многополосная

£3,0

-

0,9

3,5

-

0,96

³3,75

-

1,0

Двухполосная

-

6,0

0,85/0,54*

-

7,0

0,9/0,71*

-

7,5

1,0/0,87*

*В знаменателе приведены коэффициенты при наличии снежного наката на полосе движения.

2.3. При расчетах следует исходить из следующей максимальной практической пропускной способности (Рmax легковых авт/ч):

Однополосные дороги, имеющие разъезды.... 800 в оба направления

Двухполосные дороги....................................... 2000 »  »   »

Трехполосные      »............................................ 4000 »  »   »

Автомобильные магистрали, имеющие
4 полосы............................................................. 2000 по одной полосе

То же, 6 полос                                                     2200 »       »         »

»,    8     »                                                         2300 »       »          »

2.4. Значения коэффициента b1 приведены в табл. 2.2. Коэффициент b2 имеет следующие значения:

Ширина обочины, м...... 3,75            3,0              2,50          2,0            1,5

b2...................................... 1,0              0,97            0,92          0,8            0,7

Коэффициенты b3-b5 приведены в табл. 2.3-2.5. Коэффициенты b6-b8 имеют следующие значения:

Расстояние видимости, м................... <50        50-100     100-150   150-250   50-350................................................................. >350

b6........................................................... 0,68          0,73         0,84          0,80          0,98     1,0

Радиус кривой в плане, м................... <100      100-250   250-450   450-690   >600

b7........................................................... 0,85          0,90         0,96          0,99          1,0

Ограничение скорости знаком, км/ч. 10             20            30             40             50        60

b8........................................................... 0,44          0,76         0,88          0,96          0,98     1,0

Таблица 2.3

Расстояние от кромки проезжей части до препятствия, м

b3 при ширине полосы движения, м

Боковые помехи с одной стороны

Боковые помехи с обеих сторон

2,5

1,0

1,0

0,98

1,0

0,98

0,96

2,0

0,99

0,99

0,95

0,98

0,97

0,93

1,5

0,97

0,95

0,94

0,96

0,93

0,91

1,0

0,95

0,90

0,87

0,91

0,88

0,85

0,5

0,92

0,83

0,80

0,88

0,78

0,75

0

0,85

0,78

0,75

 0,82

0,73

0,70

Таблица 2.4

Количество автопоездов в потоке, %

b4 при числе легких и средних грузовых автомобилей, %

10

20

60

60

70

1

0,99

0,98

0,94

0,90

0,86

5

0,97

0,96

0,91

0,88

0,84

10

0,95

0,93

0,88

0,85

0,81

15

0,92

0,90

0,85

0,82

0,78

20

0,90

0,87

0,82

0,79

0,76

25

0,87

0,84

0,79

0,76

0,73

30

0,84

0,81

0,76

0,72

0,70

Примечание. Коэффициент b4 на подъемах не учитывают, так как состав движения учтен при определении коэффициента b5.

Таблица 2.5

Продольный уклон, ‰

Длина подъема, м

b5, при количестве автомобильных поездов в потоке, ‰

Продольный уклон, ‰

Длина подъема, м

b5, при количестве автомобильных поездов в потоке, ‰

2

5

10

15

2

5

10

15

20

200

0,98

0,97

0,94

0,89

50

200

0,90

0,85

0,80

0,74

500

0,97

0,94

0,92

0,87

500

0,86

0,80

0,75

0,70

800

0,96

0,92

0,90

0,84

800

0,82

0,76

0,71

0,64

30

200

0,96

0,95

0,93

0,86

60

200

0,83

0,77

0,70

0,63

500

0,95

0,93

0,91

0,83

500

0,77

0,71

0,64

0,55

800

0,93

0,90

0,88

0,80

800

0,70

0,63

0,53

0,47

40

200

0,93

0,90

0,86

0,80

70

200

0,75

0,68

0,60

0,55

500

0,91

0,88

0,83

0,76

500

0,63

0,55

0,48

0,41

800

0,85

0,85

0,80

0,72

800

 

 

 

 

Значения коэффициента b9 приведены в табл. 2.6.

Таблица 2.6

Число автомобилей, поворачивающих налево, %

Тип пересечения

Т-образное

четырехстороннее

b6 при ширине проезжей части основной дороги, м

7,0

7,5

10,5

7,0

7,5

10,5

Необорудованное пересечение

0

0,97

0,98

1,00

0,94

0,95

0,98

20

0,85

0,87

0,92

0,82

0,83

0,91

40

0,73

0,75

0,83

0,70

0,71

0,82

60

0,60

0,62

0,75

0,57

0,58

0,73

80

0,45

0,47

0,72

0,41

0,41

0,70

Частично оборудованное пересечение с островками
без переходно-скоростных полос

0

1,0

1,0

1,0

0,98

0,99

1,0

20

0,97

0,98

1,0

0,98

0,97

0,99

40

0,93

0,94

0,97

0,91

0,92

0,97

60

0,87

0,88

0,93

0,84

0,85

0,93

80

0,87

0,88

0,92

0,84

0,85

0,92

Полностью канализированное пересечение

0

1,0

1,0

1,0

1,0

1,0

1,0

20

1,0

1,0

1,0

1,0

1,0

1,0

40

1,0

1,0

1,0

1,0

1,0

1,0

60

1,0

1,0

1,0

1,0

1,0

1,0

80

0,97

0,98

0,99

0,95

0,97

0,98

Коэффициенты b10 и b14 имеют следующие значения:

Обочины имеют то же покрытие, что и проезжая часты.................................. 1,0

Обочины укреплены: щебнем с краевой полосой из бетонных плит; щебнем без краевой полосы.................................................................................................................................. 0,99

засевом трав........................................................................................................... 0,95

Неукрепленные обочины в сухом состоянии..................................................... 0,90

Скользкие, покрытые грязью обочины............................................................... 0,45

                                                                                                                                    b11

Шероховатое асфальто- или цементобетонное, черное щебеночное покрытие............................................................................................................................. 1,0

Асфальтобетонное покрытие без поверхностной обработки........................... 0,91

Сборное бетонное покрытие................................................................................ 0,80

Булыжная мостовая............................................................................................... 0,42

Грунтовая дорога без пыли, сухая....................................................................... 0,90

То же, размокшая.................................................................................................. 0,1-03

                                                                                                                                    b12

Площадка отдыха, бензозаправочные станции или остановочные площадки с полным отделением от основной дороги и наличием специальной полосы для въезда...................................................................................................................................... 1,0

То же, при наличии только отгона ширины....................................................... 0,98

» ,   при отсутствии полосы и отгона............................................................. 0,80

» ,   без отделения от основной проезжей части........................................... 0,64

                                                                                                                                    b13

Осевая разметка..................................................................................................... 1,02

Краевая и осевая разметки................................................................................... 1,06

Разметка полос на подъемах с дополнительной полосой................................. 1,50

То же, на четырехполоснои дороге..................................................................... 1,23

» ,   на трехполосной дороге                                                                             1,30

Двойная осевая разметка...................................................................................... 1,12

Знак ограничения скорости.......................................................................... b14»b8, b14

Указатели полос движения.................................................................................. 1,10

Значения коэффициента b15 приведены в табл. 2.7.

Таблица 2.7

Число автобусов в потоке, %

b15 при числе легковых автомобилей в потоке, %

70

60

40

30

20

10

1

0,82

0,76

0,74

0,72

0,70

0,68

5

0,80

0,75

0,72

0,71

0,69

0,66

10

0,77

0,73

0,71

0,69

0,67

0,65

15

0,75

0,71

0,69

0,67

0,66

0,64

20

0,73

0,69

0,68

0,66

0,64

0,62

30

0,70

0,66

0,64

0,63

0,61

0,60

Приведение различных транспортных средств к легковым автомобилям производят с помощью коэффициента (СНиП II-Д.5-72):

Легковые автомобили............................................................................................. 1,0

Мотоциклы с коляской........................................................................................... 0,75

»                   и мопеды.............................................................................................. 0,5

Грузовые автомобили грузоподъемностью до 2 т................................................ 1,5

То же, 6т................................................................................................................... 2,0

»          8 т................................................................................................................... 2,5

»          14т.................................................................................................................. 3.0

» свыше 14 т.............................................................................................................. 3,5

Автопоезда грузоподъемностью до 6 т................................................................. 2,5

То же, 12 т................................................................................................................. 3,0

»          20 т................................................................................................................. 4,0

»          30 т................................................................................................................. 5,0

»          30 т ................................................................................................................ 6.0

Автобусы .................................................................................................................. 3,5

2.5. Промежуточные значения коэффициентов, приведенных в п. 2.4, определяют интерполяцией.

2.6. Для оперативной проверки практической пропускной способности участков двухполосных дорог, имеющих сочетание геометрических элементов, рекомендуется уравнение:

,                                      (2.4)

где b-ширина проезжей части, м: i - продольный уклон, ‰ (0£i£50‰); R -радиус кривой в плане, м (400 м£R£1000 м); nл-число легковых автомобилей в потоке, доли единицы.

2.7. При проектировании пропускную способность участка подъема двухполосных дорог с дополнительной полосой определяют как сумму пропускных способностей двух полос с учетом распределения потока по полосам на подъем:

.                                                                (2.5)

Пропускная способность дополнительной (правой) полосы па подъеме

.                                              (2.6)

Пропускная способность основной (левой) полосы при наличии дополнительной полосы на подъеме

.                                          (2.7)

расчет пропускной способности трехполосных дорог

2.8. Проектируя реконструкцию двухполосных дорог в трехполосные и разрабатывая мероприятия по улучшению транспортно-эксплуатационных качеств существующих трехполосных дорог, следует исходить из максимальной практической пропускной способности трехполосных дорог и перспективного роста интенсивности движения потока автомобилей. При этом к основным требованиям, предъявляемым к проектам реконструкции, следует относить обеспечение соответствия ширины проезжей части после реконструкции реальной интенсивности движения в настоящее время и на расчетную перспективу, с учетом характера ожидаемого транспортного потока, при минимальных капитальных затратах.

2.9. Пропускная способность трехполосных дорог зависит от интенсивности и структуры транспортного потока, неравномерности их распределения по направлениям, а также от методов организации движения.

2.10. Максимальная практическая пропускная способность трехполосной дороги может быть при следующих дорожных условиях: прямолинейный горизонтальный участок; расстояние видимости с учетом обгона не менее 700 м; проезжая часть размечена на три полосы движения (ширина каждой 3,75 м); укрепленные обочины шириной 3 м; покрытие сухое, ровное и шероховатое; транспортный поток состоит только из легковых автомобилей; интенсивность движения в преобладающем направлении превышает интенсивность встречного потока не менее чем в 2 раза; боковые препятствия отсутствуют, погодные условия благоприятные. В этих условиях наиболее полно используются все полосы проезжей части трехполосной дороги.

2.11. При расчетах в зависимости от методов организации движения нужно исходить из следующей максимальной практической пропускной способности трехполосных дорог в оба направления: трехполосное движение - 4000 авт/ч, реверсивное движение по средней полосе - 4200 авт/ч.

2.12. Для расчета максимальной пропускной способности отдельных участков трехполосных автомобильных дорог и получения дополнительных коэффициентов снижения пропускной способности, необходимых при оценке эффективности мероприятий по повышению их транспортно-эксплуатационных качеств, в реальных дорожных условиях следует пользоваться уравнениями:

при организации трехполосного движения

;                                                      (2.8)

при организации реверсивного движения по средней полосе

,                                                        (2.9)

где a - коэффициент, учитывающий влияние дорожных условий на пропускную способность; av - коэффициент, учитывающий влияние длины перегона между пересечениями и примыканиями на скорость автомобилей; aN - коэффициент, учитывающий влияние неравномерности распределения интенсивности движения по направлениям на степень загруженности средней полосы трехполосной дороги; aр - коэффициент, учитывающий распределение автомобилей по ширине проезжей части при организации реверсивного движения; v0 - скорость свободного движения, км/ч; qmax - максимальная плотность потока на одной полосе, авт/км.

Расчетные значения коэффициента a:

Разметка                           трехполосная        трехполосная с реверсивной полосой

Пределы a .                                  0,19-0,23                      0,20-0,25

Расчетное значение a                     0,20                               0,22

Расчетные значения av при разной длине перегона между пересечениями и примыканиями:

L, км................... ³3 2   1,5     1,0     0,5     0,5

av....................... 1,0 0,98   0,96   0,92   0,88   0,80

Степень загрузки движением средней полосы при трехполосной разметке проезжей части зависит от неравномерности распределения интенсивности и состава движения по направлениям, характеризуемой коэффициентом kN, который определяется как отношение интенсивности движения автомобилей преобладающего направления к интенсивности встречного движения.

Значения коэффициента aN для практических расчетов

kN............................................... 1                               ³2

aN............................................... 1                               1,18

При промежуточных значениях коэффициента kN aN следует определять интерполяцией.

Коэффициент aр зависит от состава преобладающего транспортного потока:

Легковые автомобили, %........ <26             25-30          60-75         >75

aр............................................... 1,64            1,75            1,69            1,92

qmax определяют в рассматриваемых дорожных условиях по методике, изложенной в п. 2.2.

2.13. Для определения пропускной способности трехполосных дорог в разных условиях введены дополнительные коэффициенты снижения максимальной пропускной способности. Они установлены на основе измерения средней величины свободных скоростей автомобилей и максимальной плотности движения на одних и тех же участках трехполосных дорог с различными дорожными условиями.

Рис. 2.1. Номограмма для оценки пропускной способности трехполосных дорог с различными проектными решениями:

I - организация двухполосного движения; II - организация трехполосного движения; III - организация трехполосного движения с реверсивной полосой; IV - реконструкция трехполосной дороги в четырехполосную автомобильную магистраль

Каждый дополнительный коэффициент характеризует изменение пропускной способности конкретных участков, имеющих ширину проезжей части 10,5-12 м, с различными методами организации по сравнению с максимальной пропускной способностью трехполосной дороги в благоприятных дорожных условиях (см. п. 2.11).

Значения дополнительных коэффициентов снижения максимальной способности даны в табл. 2.8-2.14. Верхний индекс в обозначениях коэффициентов b(т) означает трехполосную дорогу.

Частные коэффициенты снижения пропускной способности, отражающие влияние расстояния видимости, радиусов кривых в плане, продольного уклона, укрепления обочин, типов покрытии, планировки пересечении, примыкании и сооружений, обслуживающих движение, состава потоков автомобилей, знаков и указателей на пропускную способность трехполосных дорог, берут из п. 2.4 коэффициенты b3; b4; b5; b6; b8;: b13; b15.

2.14. Итоговый коэффициент снижения пропускной способности трехполосных дорог в характерных дорожных условиях определяется перемножением частных коэффициентов по формуле (2.1).

2.15. При разработке проекта организации движения с учетом интенсивности и состава встречных потоков, а также обеспечения минимальных суммарных приведенных затрат пропускную способность трехполосных дорог оценивают с помощью номограммы (рис. 2.1).

Влияние на пропускную способность ширины обочин показано в табл. 2.8, а разметки - в табл. 2.9.

Таблица 2.8

Ширина проезжей части и вид разметки

 в зависимости от ширины обочины, м

3,5

3,0

2,5

2,0

1,5

1,0

0,5

10,5 м, осевая разметка

1,0

0,99

0,95

0,92

0,90

0,87

0,82

10,5-12,0 м, разметка на три полосы

1,0

0,97

0,93

0,90

0,88

0,85

0,80

Таблица 2.9

Ширина проезжей части, м

при разметке

трехполосной

двухполосной

отсутствует

11,25-12,0

1,0

0,88

0,75

10,5

0,96

0,85

0,72

Влияние ровности покрытия на пропускную способность:

Ровность, см/км........ <200...... 200-400     400-600      600-800     800

................................... 1,0           0,93            0,82            0,70       0,60

Влияние стоящих на обочине транспортных средств на пропускную способность показано в табл. 2.10.

Влияние неподвижных боковых препятствий (опор путепроводов, телеграфных столбов, мачт светильников, растущих на обочинах деревьев) на пропускную способность:

Расстояние до кромки проезжей части, м...... 4,0   3,0     2,5     2,0     1,5     1,0

........................................................................ 1,0   0,94   0,89   0,85   0,81   0,75

Влияние наличия и месторасположения пешеходных дорожек относительно проезжей части на пропускную способность :

В 10 м от кромки проезжей части................................................................................. 1,0

В 5 м   »       »               »   :

При наличии пешеходного ограждения....................................................................... 1,0

» его отсутствии............................................................................................................................................... 0,92

На обочине............................................................................................................................................... 0,83

Таблица 2.10

Расстояние от кромки проезжей части до препятствия, м

Боковые помехи с одной стороны

Боковые помехи с обеих сторон

при разметке проезжей части на полосы

две

три

три с реверсивной полосой

две

три

три с реверсивной полосой

2,5

1,0

1,0

1,0

1,0

0,94

0,98

2,0

1,0

0,99

0,98

0,99

0,97

0,95

1,5

0,98

0,96

0,95

0,97

0,94

0,90

1,0

0,96

0,92

0,90

0,93

0,86

0,85

0

0,91

0,88

0,77

0,85

0,80

0,70

-0,5

0,86

0,75

0,70

0,80

0,70

0,62

-1,0

0,81

0,70

-

0,74

0,63

-

Примечание. Коэффициенты вычислены относительно Pmax при соответствующей разметке проезжей части.

Влияние условии освещенности проезжей части на пропускную способность показано в табл. 2. 11.

Таблица 2.11

Условия освещенности

 при разметке

трехполосной

осевой

отсутствие

Днем

1,0

0,68

0,75

Освещена

0,93

0,82

0,70

Не освещена

0,86

0,75

0,65

Примечание. Коэффициенты вычислены относительно Pmax при трехполосной разметке в дневное время.

пропускная способность дорог с многополосной проезжей частью

2.16. На автомобильных дорогах с многополосной проезжей частью движение по полосам распределяется неравномерно, пропускную способность следует оценивать путем расчета пропускной способности каждой полосы в отдельности с учетом состава потока.

2.17. Общая пропускная способность автомобильной магистрали

,                                                   (2.10)

где Р1, Р2, Р3, ..., Рn - пропускная способность первой, второй и т. д. полос, авт/ч, определяемая по формуле (2.11).

2.18. Пропускная способность отдельной полосы:

,                                      (2.11)

где k - коэффициент приведения смешанного потока автомобилей к потоку легковых автомобилей;

;

b1 - коэффициент, учитывающий радиус кривоq в плане; b2 - коэффициент, учитывающий влияние пересечении в разных уровнях (табл. 2.12); b - ширина полосы, м (6=3¸3,75 м); р - количество тяжелых автомобилей и автобусов, % (p=£30%); i-продольный уклон, % (0£i£40%); n1 - количество (в долях единицы) транспортных средств различных типов; ycj - коэффициент приведения к легковому автомобилю отдельных типов транспортных средств (см. п. 2.4).

Таблица 2.12

Вид сопряжения съезда с автомобильной магистралью

Интенсивность движения на съезде, % от интенсивности по магистрали

b2 полосы

правой

левой

Переходно-скоростные полосы, отделенные от основной проезжей части разделительной полосой

10-25

0,95

1,0

25-40

0,90

0,95

Только переходно-скоростные полосы

10-25

0,88

0,95

25-40

0,83

0,90

Съезды без переходно-скоростных полос

10-25

0,80

0,90

25-40

0,75

0,80

2.19. Коэффициент b1 в формуле (2.11) следует учитывать только при определении пропускной способности левой полосы на кривой. Коэффициент b1, отражающий влияние кривой в плане, рекомендуется принимать равным 0,85, если радиус менее 1000 м, и 1 при больших радиусах.

2.20. Определяя пропускную способность полосы и используя коэффициенты ycj, и пi (формула 2.11), необходимо учитывать особенности распределения автомобилей разного типа по полосам при интенсивности движения, близкой к пропускной способности. Данные о распределении автомобилей на четырехполосной магистрали, полученные из наблюдений, приведены в табл. 2.13. При ином, чем указано в таблице, составе следует прибегать к интерполяции. Необходимо также учитывать, что тяжелые автомобили и автомобильные поезда движутся, как правило, по правой полосе.

Таблица 2.13

Число легковых автомобилей, % от общей интенсивности движения

Состав потока на правой полосе, %

Состав потока на левой полосе, %

Легковые автомобили

Грузовые автомобили

Легковые автомобили

Грузовые автомобили

20

7-10

90-93

30-35

65-70

40

21-30

70-76

50-55

45-50

60

38-45

65-62

65-70

30-35

80

74-84

16-26

80-85

15-20

учет погодно-климатических факторов при оценке пропускной способности

2.21. Пропускная способность автомобильных дорог наиболее заметно снижается в периоды действия неблагоприятных погодно-климатических факторов: дождей, снегопадов, гололеда, тумана и др. Это объясняется тем, что такие факторы существенно влияют на состояние дороги, автомобиля и водителя, на взаимодействие автомобиля с дорогой и восприятие водителем дороги и окружающей обстановки. В результате снижается скорость, увеличиваются интервалы в транспортном потоке и, как следствие, снижается пропускная способность, образуются заторы и остановки.

Поэтому пропускную способность обязательно проверяют для состояния дороги и условий погоды в наиболее трудные периоды года - зимний и осенне-весенний.

2.22. В зависимости от категории и народнохозяйственного значения дороги, содержания, климата района при оценке пропускной способности могут быть приняты следующие расчетные состояния поверхности дороги.

а) Зимний период:

1) слой рыхлого снега на покрытии и обочинах лежит только во время снегопада и метелей в перерывах между проходами снегоочистительных машин;

2) проезжая часть чистая, уплотненный снег и лед имеются на прикромочных полосах, а рыхлый снег на обочинах;

3) на проезжей части слой плотного снежного наката, на обочинах рыхлый снег;

4) поверхность дороги покрыта гололедом;

5) покрытие влажное, имеется рыхлый слой снега и льда, растворенного хлоридами.

Характерные условия погоды: снегопад без ветра или с ветром скоростью до 3 м/с, метель (низовая, верховая, общая), сильный ветер.

Схемы 1, 4 и 5 - расчетные для дорог I-III категорий, 2 и 3 - для дорог III и IV категорий.

6) Осенне-весенний переходный период:

1) вся поверхность дороги мокрая, чистая;

2) проезжая часть мокрая, чистая, прикромочные полосы загрязнены;

3) проезжая часть мокрая, загрязненная.

Схема 1 является расчетной для дорог I и II категорий с обочинами, укрепленными на всю ширину каменными материалами, обработанными минеральным или органическим вяжущим.

Схема 2 относится к дорогам с обочинами, укрепленными каменными материалами на всю ширину или краевые полосы, схема 3 - к дорогам без укрепленных обочин и краевых полос.

2.23. Пропускную способность полосы движения двухполосных дорог с учетом их состояния и погодно-климатических условий следует определять по формуле (2.2).

Рис. 2.2. Зависимость среднеквадратичного отклонения от максимальной скорости:

а - для двухлолосных дорог; б - для автомобильных магистралей; 1 - максимальное значение; 2 - минимальное значение

2.24. Средняя скорость свободного движения для расчета пропускной способности с учетом состояния дороги и погодно-климатических условий

, или

,                                                     (2.12)

где vф max - максимально возможная по динамическим характеристикам или условиям безопасности скорость легкового автомобиля в расчетных условиях погоды на данном элементе дороги; vэ max - максимальная скорость в эталонных условиях движения на данном участке дороги, но не более vp км/ч; sv - среднее квадратичное отклонение скорости движения свободного транспортного потока, км/ч; принимают по данным рис. 2.2. для скорости:

;                                                            (2.13)

,                                                                   (2.14)

Кp - коэффициент обеспеченности расчетной скорости.

За эталонный принят горизонтальный прямой участок с сухим, чистым, шероховатым покрытием и укрепленными обочинами. За эталонные условия погоды принято сухое летнее время, с температурой воздуха 20°С, при отсутствии дождя, ветра и тумана.

Для упрощения расчетов vэ mах можно принять равной 120 км/ч, после чего весь расчет пропускной способности при неблагоприятных условиях погоды и неблагоприятном состоянии дорог сводится к определению vф mах и Кp.

2.25. Коэффициент, учитывающий влияние загрузки движением встречной или попутной полос в различных погодно-климатических условиях:

Условия                                                    эталонные               нормальные            трудные

Кр.с                                                               1                               0,75-1                    0,75

w для двухполосных дорог                       0,9                            0,8                          0,7

w для многополосных дорог                    0,9                            0,9                          0,8

2.26. Коэффициент a, учитывающий дорожные условия и максимально возможную или максимально допустимую скорость: для двухполосных дорог со встречным движением

;                                                 (2.15)

для многополосных дорог с попутным движением:

при максимальных скоростях до 110 км/ч

;                                                  (2.16)

при максимальных скоростях от 110 до 150 км/ч

.                                                  (2.17)

2.27. Фактическую максимально возможную или максимально допустимую скорость легкового автомобиля при проектировании новых дорог можно определить аналитическим путем исходя из схем расчета, требований к геометрическим параметрам и транспортно-эксплуатационным характеристикам. Основной задачей при этом является обязательный учет влияния метеорологических факторов на дорогу, взаимодействия автомобиля с дорогой и восприятия водителем условий движения.

2.28. Для определения пропускной способности дорог vф mах можно определить расчетом или по данным наблюдений за скоростями свободного движения легковых автомобилей в неблагоприятных условиях погоды на всех характерных участках дороги при всех расчетных скоростях.

2.29. Максимально возможную скорость в период снегопада или при наличии снега на горизонтальных участках или на подъемах определяют из основного уравнения движения, подставляя в него соответствующие значения сопротивления качению и коэффициента сцепления (см. рис. 2.3).

Максимально допустимую скорость на спуске определяют из условия торможения перед внезапно возникшим препятствием на покрытии, а коэффициент обеспеченности расчетной скорости находят исходя из равенства остановочных путей при эталонном состоянии и покрытии, характерном для расчетного периода.

Значения коэффициентов обеспеченности расчетной скорости при различных состояниях покрытия и на участках с различными продольными уклонами приведены на рис. 2.4.

Рис. 2.3. Зависимость коэффициентов сцепления j и сопротивления качению f от толщины неуплотненного снега А на покрытии

Рис. 2.4. Влияние продольного уклона и состояния покрытия на скорость движения:

a - на подъеме; б - на спуске; 1 - сухое чистое покрытие f = 0,015; 2 - слой рыхлого снега h=25 мм. f =0,02; 3 - уплотненный слой снега f = 0,04; 4 - слой рыхлого снега h=20 мм; f =0,09; 5 - то же, h=40 мм, f =0,10; 6 - то же, h=80 мм; f =0,15; 7 - то же, h=10 мм; f =0,17; 8 - гололед на покрытии; f =0,09; 9 - сухое чистое, j=0,5¸0,6; 10 - мокрое чистое, j =0,4; 11 - мокрое, j- 0,3; 12 - снежный накат, j =0,2; 13 - гололед j =0,1

Рис. 2.5. Схема для расчета ширины укрепления

2.30. Максимально допустимую скорость при различных сочетаниях параметров проезжен части, краевых укрепленных полос и обочин в зависимости от их состояния и метеорологических условий, можно определить из схемы расчета требуемой ширины укрепленной поверхности дороги (рис. 2.5).

Коэффициент обеспеченности расчетной скорости для двухполосных дорог:

.                                                   (2.18)

Для дороги 1 категории с двумя проезжими частями

,                                                 (2.19)

где В - ожидаемая фактическая ширина дороги в неблагоприятные периоды с учетом ее уменьшения за счет загрязнения прикромочных полос, образования на них снежного наката, льда и т. д.; В - проектная ширина проезжей части дороги м;

.                                                          (2.20)

Ожидаемая фактическая ширина укрепленной поверхности

,                                                      (2.21)

где К - ширина полосы загрязнения (табл. 2.14)

Значения максимальных возможных скоростей и коэффициентов обеспеченности расчетных скоростей в зависимости от фактически используемой для движения ширины укрепленной поверхности дороги приведены на рис. 2.6.

Таблица 2.14

Тип укрепления обочин.

К, м, в период

зимний

осенне-весенний

Покрытие асфальтобетонное, цементо-бетонное или обработанное вяжущим

-

-

Слои щебня, гравия

0,2-0,3

0,1-0,2

Засев трав

0,2- 0,5

0,1-0,2

Без укрепления

0,2-0,5

0,1-0,

Бордюр высотой

3h-8h

3h

Примечание. На участках дорог, где имеются помехи для выполнения работ по содержанию, применяют максимальные значения К. К таким участкам относят подходы к мостам и путепроводам, участки над трубами, места установки ограждения, надолб, направляющих столбиков и др.

Рис. 2.6. Влияние ширины укрепления на скорость:

а - для двухполосных дорог: б - для автомобильных магистралей;

1- ВАЗ-2103 + ВАЗ-2103; 2 - ГАЗ-24 + ГАЗ-24; 3 - ЗИЛ-130 + ВАЗ-2103; 4 - ЗИЛ-130 + ГАЗ-24; 5 - ЗИЛ-130 + ЗИЛ-130

2.31. Максимально допустимую скорость на кривых в плане определяют по условиям устойчивости автомобиля при движении по покрытию, находящемуся в состоянии, характерном для расчетного периода с учетом воздействия бокового ветра,

,                                               (2.22)

где j2=(0,6¸0,8) j - поперечное сцепление; iв - поперечный уклон виража; - коэффициент, учитывающий боковое воздействие ветра.

v, м/с                                                        20                    30               40               50

q для автомобилей:

ГАЗ-24 «Волга», ВАЗ-2103

«Жигули», «Москвич-412»                  0,010               0,022          0,040          0,063

ЗАЗ-966 «Запорожец», РАФ-977Д     0,013               0,029          0,063          0,081

2.32. Определяя расчетную скорость ветра, учитывают положение дороги на местности, ее защищенность, а также порывистость ветра:

,                                                     (2.23)

где k1 - коэффициент, учитывающий положение дороги на местности; k2 - коэффициент, учитывающий переход от показаний флюгера (измерении на метеостанциях) к высоте центра боковой поверхности автомобиля на дороге; k3 - коэффициент, учитывающий порывистость ветра (1,7 - для порывистого и 1,9 - крайне порывистого ветра; vф -скорость ветра по флюгеру на высоте 10 м повторяемостью 1 раз в год (по данным ближайшей метеостанции, может быть также принята по картам зонирования расчетного ветра).

Форма рельефа и положение дороги на местности:..................................... k1

Открытое ровное место.................................................................................... 1

Вершины открытых возвышенностей:

>50 м........................................................................................................... 1,2-1,1

<50 м........................................................................................................... 1,1

Наветренные склоны крутизной 3-10°:

верхняя часть.............................................................................................. 1,0-1,1

средняя........................................................................................................ 1,0

нижняя........................................................................................................ 0,2-1,0

Параллельные ветру склоны крутизной 3-10°:

верхняя часть.............................................................................................. 0,9-1,0

средняя........................................................................................................ 0,8-0,9

нижняя........................................................................................................ 0,7-0,8

Подветренные склоны крутизной 3-10°:

верхняя и средняя части............................................................................ 0,8-0,9

нижняя часть.............................................................................................. 0,6-0,7

Дно долин, оврагов, лощин, глубоких выемок:

продуваемых ветром.................................................................................. 1,0-1,1

непродуваемых........................................................................................... 0,6-0,7

замкнутых ................................................................... 0,3 0,2     0,25   0,9     0,95

Высота центра боковой поверхности автомобиля над уровнем земли, м....................................................................................... 8....................................................................................... 6....................................................................................... 4....................................................................................... 2....................................................................................... 0

k2.......................................................................................... 0,6

2.33. Коэффициент обеспеченности расчетной скорости, зависящий от радиуса кривой в плане, расчетного состояния покрытия и расчетной скорости ветра, можно определить по графикам (рис. 2.7).

Рис. 2.7. Влияние радиуса кривой R в плане, состояния покрытия и скорости ветра на скорость автомобиля:

a - сухое чистое покрытие j=0,6; б - мокрое чистое покрытие j=0,4; в - слой рыхлого снега или снежный накат на покрытии Ф=0,3; г - гололед на покрытии j=0,12; 1 - скорость ветра 0-5 м/с; 2 - 20 м/с; 3 - 30 м/с; 4 - 40 м/с; 5 - 50 м/с

Рис 2.8. Влияние коэффициента сцепления j на снижение расчетных скоростей:

а - по схеме торможения одиночного автомобиля; б - по схеме торможения встречных автомобилей; 1 - 750; 2 - 300; 3 - 200; 4 - 175; 5 - 100; 6 - 750; 7 - 350; 8 - 300; 9 - 200; 10 - 150; 11 - 100

2.34. Влияние поверхности покрытия на обеспеченность расчетной скорости определяют исходя из равенства тормозных путей автомобиля, сцепных качеств покрытия и расстоянии видимости, принятых за эталонные покрытия в состояниях, характерных для неблагоприятных периодов, (рис. 2.8). По этому же графику можно определить влияние гололеда и метеорологической видимости на скорость Кр.с.

2.35. Расстояния видимости при тумане можно взять из климатических справочников. Для случая снегопада ее можно определить расчетом исходя из установленных в метеорологии зависимостей между интенсивностью снегопада и метеовидимостью (рис. 2.9). При этом видимость определяется по нижней границе балла, а интенсивность снегопада принимается по данным ближайшей метеостанции для повторяемости 1 раз в год.

2.36. Боковое воздействие ветра на скорость автомобиля на прямых участках определяют, сравнивая допустимое отклонение траектории движения автомобиля при заданной ширине полосы движения с фактическим.

Допустимое отклонение (м):

,                                                     (2.24)

где b - ширина полосы движения многополосной автомобильной магистрали, м; с -допустимое приближение автомобиля к границе полосы движения (принимается 0,2-0,3); т - ширина кузова автомобиля, м.

Фактическое отклонение (м):

,                                                          (2.25)

где а1 - коэффициент, учитывающий скорость автомобиля; a2 - коэффициент, учитывающий конструктивные характеристики автомобиля и скорость ветра; t - время реакции водителя на порыв ветра.

Рис. 2.9. Зависимость метеорологической дальности видимости от интенсивности осадков:

1 и 2 -нижняя к верхняя граница балла видимости

Рис. 2.10. Влияние скорости ветра на обеспеченность расчетной скорости:

1, 2, и 3 - время реакции водителя (соответственно 1; 1,5 и 2 с)

Коэффициент а1 для разных скоростей автомобиля:

Скорость, км/ч................ 50      60  70 80 90 100    110    120    130

а1...................................... 0,13   0,15   0,2     0,3     0,6     0,95   1,22   1,42   1,67

Коэффициент а2 для расчетного автомобиля:

Скорость ветра, м/с........ 10      20  30 40 50

а2...................................... 0,3     0,55   0,65   0,75   0,80

Скорость ветра определяют с учетом указаний п. 2.32. Максимально допустимую скорость по условиям безопасности движения определяют из равенства доп, а Кр.с может быть принят по рис. 2.10.

2.37. По изложенной методике определяют максимальные скорости и коэффициенты обеспеченности расчетной скорости при разных состояниях дорог и воздействия основных метеорологических факторов.

Для наиболее ответственных дорог или участков эти показатели могут быть определены для случаев совместного воздействия ряда метеорологических факторов.

Примеры расчета пропускной способности дорог с учетом влияния погодно-климатических факторов даны в приложении 4.

построение линейного графика пропускной способности и уровня загрузки отдельных участков

2.38. Совместное влияние элементов дороги на пропускную способность оценивают путем перемножения частных коэффициентов снижения пропускной способности. На участках подъемов с продольным уклоном до 20‰ учитывают все коэффициенты, а с продольным уклоном больше 20‰ учитывают все коэффициенты, кроме b3.

2.39. Каждый элемент дороги, снижающий пропускную способность, имеет зону влияния, в пределах которой изменяются режим движения потоков автомобилей и пропускная способность. При построении графика изменения пропускной способности нужно использовать следующие протяжения зон влияния в каждую сторону от рассматриваемого элемента (в м):

Населенные пункты.............................................................................. 300

Участки подъемов длиной до 200 м................................................... 350

То же, больше 200 м............................................................................. 650

Кривые в плане радиусом больше 600 м............................................ 100

То же, меньше 600 м............................................................................. 250

Участки с ограниченной видимостью меньше 100 м....................... 150

То же, 100-350 м................................................................................... 100

»     , больше 350 м.............................................................................. 50

Пересечения в одном уровне............................................................... 600

2.40. Графики изменения пропускной способности вдоль дороги (см. рис. 2.11) строят в следующем порядке (см. приложение 5):

а) выделяют однородные элементы дороги и зоны их влияния;

б) выписывают значения частных коэффициентов снижения пропускной способности (п. 2.4);

Рис. 2.11. Линейный график изменения пропускной способности и коэффициента загрузки на участке:

------ двухполосной дороги до реконструкции; ______ после реконструкции двухполосной дороги в трехполосную

в) вычисляют пропускную способность по формуле (2.1);

г) вычисляют пропускную способность в физическом количестве автомобилей, учитывая состав потока автомобилей и используя коэффициенты, приведенные в пп. 2.4 и 2.41;

д) строят график изменения пропускной способности вдоль дороги. Пример построения графика приведен в приложении 1.

2.41. Пропускная способность Рф в физическом количестве автомобилей с учетом формулы (2.1):

,                                               (2.26)

где nj - количество (в долях единицы) транспортных средств разных типов; ycj - коэффициенты приведения (см. п. 2.4) соответственно для легковых автомобилей, мотоциклов, грузовых автомобилей, автомобильных поездов и автобусов.

2.42. Над графиком пропускной способности строят график изменения коэффициента загрузки каждого участка (см. рис. 2.11).

Коэффициент загрузки определяют как отношение интенсивности движения (расчетной или существующей) к пропускной способности, выраженной в физических единицах.

2.43. При разработке проектов новых дорог следует пересматривать (в первую очередь с точки зрения увеличения числа полос движения) участки, где коэффициент загрузки превышает величины zопт, приведенные в табл. 1.4.

2.44. На основе данных об уровнях удобства движения и коэффициентах загрузки разрабатывают мероприятия по улучшению условий движения в соответствии с рекомендациями, приведенными, в разделе 6.

2.45. Для окончательного выбора мероприятий по улучшению условий движения график изменения пропускной способности анализируют совместно с графиком коэффициентов аварийности и коэффициентов безопасности, построенных в соответствии с рекомендациями СНиП 11-Д.5-72 и ВСН 35-76. Минавтодора РСФСР.

2.46. Оптимальный коэффициент загрузки служит основой для определения числа полос движения и ширины полосы отвода, выявления участков заторов1 (узких мест), установления очередности реконструкции отдельных участков.

Наиболее подробный анализ с учетом оптимального уровня загрузки следует проводить на участках (или элементах) дорог, дальнейшая реконструкция которых будет затруднена: участки с плотной застройкой, большие мосты и подходы к ним, извилистые участки в горной местности, затяжные подъемы с высокими насыпями и т.д.

1 Под участками заторов подразумеваются участки, где z³1,0.

Раздел 3
ПРОПУСКНАЯ СПОСОБНОСТЬ ПЕРЕСЕЧЕНИЙ В ОДНОМ УРОВНЕ И ЖЕЛЕЗНОДОРОЖНЫХ ПЕРЕЕЗДОВ

пропускная способность пересечений в одном уровне

3.1. При выборе планировки пересечения в одном уровне необходимо обеспечивать такой же уровень удобства движения, как и на всей дороге. Величины предельных загрузок движением пересечений приведены в табл. 3.1.

Таблица 3.1

Уровень удобства движения на главной дороге

Коэффициент загрузки

Загрузка второстепенной дороги

предельно допустимая

оптимальная

А

<0,2

0,11Ргл

0,09Ргл

Б

0,2-0,45

0,22Ргл

0,17Ргл

В

0,45-0,7

0,37Ргл

0,28Ргл

Г-а

0,7-1

0,56Ргл

0,42Ргл

Г-б

£1

0,56Ргл

0,42Ргл

Примечания. 1. Ргл - практическая пропускная способность главной дороги в рассматриваемых дорожных условиях.

2. Коэффициент загрузки и уровень удобства движения на главной дороге определяют по методике, изложенной в разделе 4.

Рис. 3.1. Номограмма для определения пропускной способности пересечений;

1 - простое пересечение; 2 - направляющие островки на второстепенной дороге; 3 - направляющие островки на обеих дорогах с разметкой проезжей части; 4 - пересечение в разных уровнях

3.2. Планировку пересечений в одном уровне с учетом обеспечения наименьшей загрузки основной дороги следует принимать с учетом рекомендаций рис. 3.1.

3.3. Пропускная способность пересечений в одном уровне в конкретных условиях

                                      (3.1)

при А + В + С = 1,

где Nгл - интенсивность движения по главной дороге, авт/ч; l=Nгл/3600; A, B, С - коэффициенты, характеризующие различные части потока (A - свободно движущиеся автомобили; В - частично связанные; С - связанная часть потока автомобилей); A=xме-xп - для участков подъемов; xм - коэффициент, учитывающий количество медленно движущихся автомобилей в потоке (табл. 3.2); xп - коэффициент, учитывающий крутизну уклона и длину подъема (см. табл. 3.3); Dtгр - граничный интервал, принимаемый водителем и определяемый по рис. 3.2; dt - интервал между выходами автомобилей из очереди на второстепенной дороге определяют в зависимости от состава движения:

Доля легковых автомобилей в потоке, %.......... 0            20          50          100

dt, с........................................................................ 2,4            3,2         3,7         4,2

Для населенных пунктов А определяют по рис. 3.3, а В=f(А) по (рис. 3.4);

b1, b2, b3 - коэффициенты, характеризующие плотность потока автомобилей;

b1=j(A) определяют по графику (рис. 3.5), b2=3,5 и b3=5,7 (для двухполосных дорог).

Расчет по уравнению (3.1) позволяет определить пропускную способность не всего пересечения, а лишь одного направления движения со второстепенной дороги, пересекающего или вливающегося в главный поток.

Полная пропускная способность определится как сумма пропускных способностей по всем направлениям.

Таблица 3.2

К, %

xм при расстоянии от подъема, м

£100

500

1000

1500

2000

3000

4000 и более

0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

10

0,64

0,72

0,78

0,82

0,85

0,88

0,83

20

0,46

0,54

0,61

0,68

0,71

0,75

0,77

30

0,36

0,43

0,50

0,58

0,62

0,68

0,70

40

0,27

0,34

0,43

0,51

0,55

0,61

0,65

Примечание. К медленно движущимся относят автомобили, скорость которых на 10-15 км/ч меньше средней для всего потока. Количество таких автомобилей определяется по материалам измерения скоростей на дороге.

Рис. 3.2. Изменение граничного промежутка времени для левого поворота в зависимости от интенсивности движения по главной дороге:

1 - простое пересечение: 2 - канализированное пересечение; интенсивность движения по главной дороге Nгл=250¸500 авт/ч; интенсивность движения поворачивающие налево автомобилей Nл=40¸90 авт/ч; _____ - Dtгр 85% обеспеченности; ------ - Dtгр 50% обеспеченности

Рис. 3.3. Влияние населенного пункта на распределение интервалов в потоке в зависимости от состава движения при расстоянии от населенного пункта:

1 - 0 м; 2 - 200 м; 3 - 400 м; 4 - 600 м; 5 - 1000 м; 6 - 1500 мм; К - доля медленно движущихся автомобилей в потоке

Таблица 3.3

Уклон, ‰

xп при длине подъема, м

Уклон, ‰

xп при длине подъема, м

50

100

200

300

50

100

200

300

£20

0

0

0

0

60

0,05

0,10

0,17

0,30

30

0

0

0,02

0,04

70

0,09

0,12

0,19

0,34

40

0

0,02

0,05

0,12

80

0,11

0,15

0,24

0,42

50

0,02

0,06

0,11

0,19

 

 

 

 

 

3.4. Для упрощения расчета все поворачивающие потоки на пересечении приводят к одному условному потоку. Ввиду того что основным параметром, определяющим пропускную способность пересечения, является граничный промежуток времени, приведение осуществляется путем сопоставления этого показателя для разных направлении. Значения коэффициентов приведения yпр при разных планировочных решениях даны в табл. 3.4.

Рис. 3.4. Зависимость между коэффициентами А и В

Рис. 3.5. Зависимость между коэффициентами А и В1

Таблица 3.4

Тип пересечения

Схема планировки

Коэффициент приведения yпр

Левый поворот с дороги

Прямое пересечение

Правый поворот

главной

второстепенной

Простое необорудованное пересечение; R= 10 м

1,1

1,1

1,0

0,62

Необорудованное пересечение; 10 м <R <25 м

1,0

1,0

1,0

0,45

Разделительный и направляющие островки на второстепенной дороге, правоповоротные съезды с переходными кривыми или коробовые кривые; главная дорога не оборудована

1,0

0,85

0,9

0,27

То же, переходно-скоростные полосы на главной дороге (не полное, канализированное)

1,0

0,85

0,9

0,1

То же, разделение встречных потоков на главной дороге

0,9

0,65

0,7

0,1

То же, левоповоротные островки на главной дороге с переходно-скоростными полосами (канализированное пересечение)

0,60

0,65

0,70

0,1

То же, переходно-скоростные полосы для левого поворота на главной дороге

0,60

0,6

0,2

0,

Рис. 3.6. Изменение граничного промежутка времени для правого поворота при различных радиусах съездов:

1 - R=10-13 м; 2 - R=15 м; 3 - R=25 м; 4 - R=50 м; 5 - R=50 м имеются переходно-скоростные полосы

Рис. 3.7. Номограмма для определения пропускной способности нерегулируемых пересечений в одном уровне:

1 - теоретическая; 2 - максимальная практическая; 3 - практическая. Сплошные линии - необорудованные пересечения, штриховая - канализированные

3.5. Интенсивность движения приведенного потока на второстепенной дороге:

.               (3.2)

Предельное значение приведенной интенсивности движения, т. е. суммарная интенсивность на второстепенной дороге:

для необорудованных пересечений

;                                         (3.3)

для канализированных пересечений

,                                              (3.4)

где Nвт, Nгл - интенсивность движения на второстепенной и главной дороге; yпр - коэффициент приведения; h - доля поворачивающего движения; Рп - пропускная способность правого поворота с второстепенной дороги, определяемая по формуле (3.1) при значении Dtгр для правого поворота, принимаемом по рис. 3.6; Nmax - пропускная способность пересечения в одном уровне.

3.6. Коэффициент загрузки движением

,                                                  (3.5)

Рис. 3.8. Номограмма для определения практической пропускной способности пересечении в одном уровне

3.7. На основе номограмм (рис. 3.7, 3.8) определяют предельные интенсивности движения для некоторых типов пересечении в одном уровне. Пример расчета пропускной способности пересечения приведен в приложении 6.

пропускная способность кольцевых пересечений

3.8. Пропускная способность кольцевого пересечения зависит от размера геометрических элементов плана пересечения, параметров транспортного потока и организации движения на въезде на кольцо.

Для одной и той же планировки кольцевого пересечения более высокая пропускная способность достигается при организации движения с преимущественным правом проезда по кольцу.

3.9. Пропускная способность кольцевого пересечения - предельная интенсивность движения па всех его въездах.

Пропускная способность въезда на кольцевое пересечение - максимальное число автомобилей, которое может въехать на пересечение за единицу времени при заданной интенсивности движения на кольце и наличии постоянной очереди автомобилей на въезде.

3.10. Для оценки пропускнон способности кольцевых пересечении необходимы данные об интенсивности и составе движения, о распределении потоков по направлениям в часы пик.

пропускная способность въезда на кольцевое пересечение

3.11. Пропускная способность въезда на кольцевое пересечение зависит, главным образом, от числа полос движения на въезде, формы въезда, интенсивности движения на кольце, состава движения.

Пропускная способность въезда на кольцевое пересечение с учетом реальных дорожных условий (авт/ч):

;                                                    (3.6)

,                                                         (3.7)

где kс - коэффициент, учитывающий состав движения; lI - коэффициент приведения i-го типа транспортного средства к легковому автомобилю для кольцевых пересечений; mi - число (в долях единицы) транспортных средств разных типов; п - число типов транспортных средств; Nк - интенсивность движения на кольце, легковых авт/ч; А и Б - коэффициенты, характеризующие планировку въезда, зависят от числа полос движения на подходе n1 и на въезде п2 (табл. 3.5); С - коэффициент, учитывающий влияние диаметра центрального островка Dц.о на пропускную способность въезда на кольцевое пересечение:

Dц.о.......................... 15-20          40-50         80               125             160             200

С............................. 0,94            1                 0,9              0,84            0,79            0,75

Таблица 3.5

n1

п2

Nк легковых авт/ч

А

Б

n1

п2

Nк легковых авт/ч

А

Б

1

1

£2240

1500

0,67

1

3

£1б00

1800

0,31

2

2

£5130

2630

1,04

 

 

³1600

3200

1,18

1

2

£1400

1800

0,45

2

3

£1100

2900

0,91

 

 

>1400

2630

1,01

 

 

>1100

3200

0,18

Число полос движения на въезде

,                                                             (3.8)

где В - ширина въезда, м; b1 - ширина полосы движения на въезде, м (b1=3,75¸4 м).

Коэффициент приведения l1 к легковому автомобилю для кольцевых пересечении с учетом типа автомобиля:

Легковые.......................................................................................................................... 1,0

Грузовые малой грузоподъемности.............................................................................. 1,4

»       средней............................................................................................................ 1,7

»       большой........................................................................................................... 2,3

Автобусы.......................................................................................................................... 2,9

Автомобильные поезда.................................................................................................. 3,5

3.12. По по формуле 3.6 определяют максимальную пропускную способность въезда, которая может быть достигнута при наличии постоянной очереди автомобилей, ожидающих въезда в зону слияния. Такой режим работы кольцевого пересечения приводит к большим народнохозяйственным потерям из-за простоев автомобилей и грузов и поэтому экономически нецелесообразен. Следовательно, необходимо определить экономически эффективную загрузку движением кольцевых пересечений.

3.13. Коэффициентом загрузки въезда называют отношение фактической интенсивности движения автомобилей на въезде к пропускной способности данного въезда в конкретных дорожных условиях

,                                                             (3.9)

где Nв - фактическая или перспективная интенсивность движения на въезде, авт/ч; Рв - максимальная пропускная способность въезда в реальных дорожных условиях (по формуле 3.6), авт/ч.

Исходя из условий эффективной работы автомобильной дороги в целом оптимальный коэффициент загрузки движением на въездах кольцевых пересечении zопт=0,65.

Коэффициент загрузки движением, соответствующий режиму практической пропускной способности въезда, zпр=0,85.

3.14. Практическая пропускная способность въезда на кольцевое пересечение

.                                                            (3.10)

пропускная способность всего кольцевого пересечения

3.15. При проектировании дороги необходимо оценивать пропускную способность не только отдельного въезда, но и кольцевого пересечения в целом. Пропускную способность каждого въезда на кольцевое пересечение определяют при фиксированной интенсивности движения на кольце.

Увеличение интенсивности движения на одном из въездов до его пропускной способности (Nв=Рв) приведет к росту интенсивности на кольце перед другими въездами, и пропускная способность других въездов уменьшится. Поэтому пропускная способность всего кольцевого пересечения будет меньше пропускных способностей въездов.

Пропускную способность всего кольцевого пересечения определяют при следующих допущениях: прирост интенсивности на всех въездах одинаков; состав движения и распределение потока по направлениям на всех въездах остаются постоянными.

Если хотя бы на одном въезде z³0,65, кольцевое пересечение достигло (или превысило при z>0,65) экономически эффективную загрузку движением и на данном въезде следует провести мероприятия по повышению пропускной способности.

Если на всех z<0,65, то можно оценить запас пропускной способности каждого въезда.

3.16. Запас пропускной способности въезда определяют из условия возрастания интенсивности движения на данном въезде (Nв) до ее пропускной способности (Рв) при равномерном увеличении интенсивности движения на всем кольцевом пересечении:

,                                                 (3.11)

,                                               (3.12)

где x - - коэффициент запаса пропускной способности въезда, который показывает, во сколько раз может увеличиться интенсивность движения на въезде до достижения пропускной способности. Остальные обозначения прежние.

Коэффициент х рассчитывают для каждого въезда при zопт=0,65. Из всех х выбирают наименьший xmin (соответствует наиболее загруженному въезду).

Полная пропускная способность кольцевого пересечения, соответствующая экономически эффективной загрузке движением (zопт=0,65),

.                                                          (3.13)

где Nв - фактическая интенсивность движения на въезде, авт/ч; i - номер въезда; n - число въездов.

3.17. Аналогично можно определить пропускную способность кольцевого пересечения, соответствующую режиму практической пропускной способности въезда (при zпр=0,85).

последовательность расчета пропускной способности кольцевых пересечений

3.18. Расчет пропускной способности кольцевых пересечений выполняют в такой последовательности:

1) на основе данных об интенсивности, о составе движения, распределении потоков по направлениям в часы пик составляют сводную таблицу интенсивностей на кольцевом пересечении (см. приложение 7);

2) составляют картограмму интенсивности на кольцевом пересечении (рис. 3.9);

3) для каждого въезда определяют коэффициенты kс, с, А и Б и вычисляют пропускную способность въезда на кольцевое пересечение по формуле (3.6);

Рис. 3.9. Картограмма интенсивности движения:

а - распределение по направлениям; б - распределение по кольцу

4) определяют коэффициент загрузки движением каждого въезда по формуле (3.9);

5) коэффициенты загрузки движением сравнивают с коэффициентом zопт= 0,65. Если хотя бы на одном въезде z³0,65, необходимы мероприятия по повышению пропускной способности въезда (см. табл. 6.1), если на всех въездах z<0,65, рассчитывают пропускную способность всего кольцевого пересечения.

пропускная способность пересечений в одном уровне на многополосных дорогах

3.19. На многополосных автомобильных дорогах в качестве первого этапа возможно устройство пересечений в одном уровне с отнесенным левым поворотом, которые при правильной планировке имеют ряд преимуществ по сравнению с крестообразными и кольцевыми пересечениями в одном уровне. При таких пересечениях снижение скорости по главной дороге наименьшее по сравнению с другими видами пересечений в одном уровне.

3.20. Пропускная способность одного направления движения на пересечении в одном уровне с отнесенным левым поворотом не зависит от другого направления, так как все направления разделены и отсутствует их взаимное влияние.

3.21. Пропускная способность данного направления (участка слияния, участков переплетения или разворота)

,                                                 (3.14)

где N - интенсивность движения одной полосы основной дороги, в которую вливается поток автомобилей второстепенной дороги, легковых авт/ч; 7=3600 с; Dtгр - граничный интервал времени, зависящий от интенсивности движения, вида маневра и планировки пересечения, dt - минимальный интервал между автомобилями, выполняющими маневр, с. Если сливаются потоки автомобилей с примыкающей дороги. N принимают для крайней правой полосы главной дороги; если переплетаются, N принимают для левой полосы; при развороте с пересечением потоков автомобилей по главной дороге принимают суммарную интенсивность по обеим полосам. Для участка разворота:

а) с пересечением потоков (т. е. с остановкой)

N2-1 - легковых авт/ч........................................ 600                  800               1000

с................................................................ 9,7                   9,0                8,2

б) с непрерывным движением

Nлев, легковых авт/ч......................................... 200                  500               800

................................................................. 4,0                   3,8                3,5

Примечания. 1.  - при слиянии потока второстепенной дороги с потоком автомобилей на главной дороге.

2.  - при пересечении потока второстепенной дороги с потоком автомобилей на главной дороге.

N1, легковых авт/ч, по правой полосе..................... 400        600        800             1000

при переплетении потоков автомобилей, Dtгр, c... 4,1         3,6         3,3              3,0

Длина участка от места примыкания

дороги до участка разворота, м................... 200      300        400        500             600

Dtгр, c.............................................................. 6,0       4,1         3,9         3,5              3,2

3.22. Минимальные интервалы между автомобилями, выполняющими маневр, принимают: dt=2,2 с - при развороте с остановкой; dt=2,5 с - при развороте с непрерывным движением; dt=2,6 с - при слиянии с примыкающей дороги на главную; dt=3,3 с - при переплетении потоков автомобилей.

3.23. Для оценки пропускной способности каждого направления движения автомобилей на пересечении в одном уровне с отнесенным левым поворотом следует пользоваться графиком (рис. 3.10).

Рис. 3.10. Зависимость пропускной способности каждого направления движения от интенсивности на главной дороге:

1 - участок разворота с остановкой; 2 - участок переплетения при L=200 м; 3 - то же, при L=300 м; 4 - участок слияния; 5-участок переплетения при L=500 м; 6 - участок разворота с непрерывным движением; L - расстояние от места примыкания дороги до участка разворота

3.24. При проектировании пересечений в одном уровне на многополосных дорогах с отнесенным левым поворотом рекомендуется ориентироваться на следующие коэффициенты загрузки:

zгл                                                                     zвт

0,2                                                                  0,3-0,4

0,2-0,45                                                            0,25-0,1

0,45-0,7                                                                 0,05

3.25. Наличие пересечений в одном уровне с отнесенным левым поворотом на четырехполосных дорогах влияет на пропускную способность автомобильной магистрали. Для оценки пропускной способности автомобильной магистрали на участках, где расположены пересечения в одном уровне с отнесенным левым поворотом, по методике, изложенной в пп. 2.16-2.20, рекомендуется пользоваться коэффициентами снижения пропускной способности, приведенными в табл. 3.6. В приложении 8 даны примеры расчета пропускной способности пересечений с отнесенным левым поворотом.

пропускная способность пересечений железных дорог в одном уровне

3.26. Определение фактической пропускной способности железнодорожных переездов и факторов, оказывающих влияние на ее уменьшение, является решающим условием для назначения сроков и степени реконструкции переездов, мероприятий, повышающих их пропускную способность.

Пропускная способность железнодорожных переездов зависит от скорости автомобилей, интенсивности движения по железной дороге, состояния покрытия, размеров геометрических элементов на подходах к переездам, средств регулирования движением, числа пересекаемых путей, состава движения по автомобильной и железной дорогам и т. д.

Таблица 3.6

Тип пересечения или примыкания

Число разворачивающихся автомобилей, %

20

40

60

80

Необорудованное пересечение

0,86

0,8

0,63

0,48

Частично оборудованное пересечение с переходно скоростными полосами на участке примыкания

0,92

0,9

0,85

0,78

Полностью канализированное пересечение с прерывным движением на участке разворота (т. е. с остановкой)

0,98

0,95

0,90

0,85

Полностью канализированное пересечение с непрерывным движением

1,0

0,98

0,96

0,93

3.27. Расчет пропускной способности железнодорожных переездов основан па определении скорости движения автомобилей; распределения интервалов между следующими друг за другом автомобилями; распределения интервалов между автомобилями при разъезде очереди; плотности движения автомобилей.

3.28. Пропускную способность железнодорожных переездов необходимо оценивать для двух случаев:

железнодорожный переезд большую часть времени открыт для движения автомобилей;

железнодорожный переезд продолжительное время закрыт для движения автомобилей.

3.29. Пропускная способность железнодорожного переезда, который большую часть открыт для проезда автомобилей:

,                                               (3.15)

где v0 - скорость свободного движения на железнодорожном переезде (табл. 3.7); q0 - плотность движения при скорости v0 (табл. 3.7); q - текущая величина плотности движения, авт/км.

 при q³q0,                                                     (3.16)

и                                         (3.17)

при q>q0.

3.30. Пропускная способность регулируемых железнодорожных переездов зависит от продолжительности закрытия и открытия переезда, интервала между автомобилями при разъезде из очереди.

Максимальная пропускная способность полосы движения в течение одного открытия переезда

,                                                             (3.15)

где dti - интервал между автомобилями при разъезде очереди, с; k - число автомобилей в очереди; tзел - продолжительность открытия переезда, с.

3.31. Ориентировочные значения пропускной способности полосы движения для железнодорожных переездов с различным числом путей приводятся в табл. 3.8.

3.32. На пропускную способность железнодорожных переездов влияют дорожные условия, на подходах к переездам: кривые в плане, подъемы и спуски, ровность покрытия.

Таблица 3.7

Число пересекаемых железнодорожных путей

v0, км/ч

v0, км/ч

qmах, авт/км

1

50

15

80-85

2

40

25

80-85

3

35

40

80-87

³4

20

50

85-90

Таблица 3.8

Число пересекаемых железнодорожных путей

Максимальная пропускная способность полосы движения, авт/ч, при 100% автомобилей

легковых

грузовых

1

1500

900

2

1200

700

3

900

660

4

800

540

Таблица 3.9

Число железнодорожных путей

Число железнодорожных путей

1

0,93

3

0,66

2

0,82

4

0,54

Таблица 3.10

Характеристика ровности проезжей части

Число железнодорожных путей

Хорошая

1

0,98

2

0,98

Удовлетворительная

1

0,80

2

0,87

Неудовлетворительная

1

0,66

2

0,69

Таблица 3.11

Интенсивность движения по железной дороге, поездов/ч

Число железнодорожных путей

1

2

3

4

Число легковых автомобилей в потоке, %

100

70

50

100

70

50

100

70

50

100

70

50

0

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

5

0,81

0,80

0,80

0,76

0,76

0,75

0,78

0,76

0,71

0,77

0,77

0,77

10

-

-

-

0,59

0,59

0,58,

0,75

0,56

0,55

0,56

0,56

0,56

15

-

-

-

0,42

0,42

0,42

0,41

0,41

0,41

0,41

0,42

0,42

20

-

-

-

-

-

-

0,30

0,30

0,29

0,30

0,30

0,30

25

-

-

-

-

-

-

-

-

-

0,20

0,19

0,19

30

-

-

-

-

-

-

-

-

-

0,15

0,15

0,15

35

-

-

-

-

-

-

-

-

-

0,11

0,11

0,11

Таблица 3.12

Радиус кривой в плане, м

 при расстоянии от переезда до центра кривой, м

Радиус кривой в плане, и

 при расстоянии от переезда до центра кривой, м

50

100

50

100

200

0,98

0,99

50-75

0,85

0,89

100-150

0,92

0,93

30-35

0,75

0,78

Таблица 3.13

Угол пересечения, град

при числе железнодорожных путей

1

2

3

4

30

0,89

0,78

0,74

0,71

30-45

0,95

0,88

0,83

0,82

45-60

0,96

0,94

0,89

0,84

60-75

0,97

0,97

0,96

0,95

75-90

0,99

0,98

0,98

0,98

90

1,00

1,00

1,00

1,00

Пропускная способность железнодорожных переездов в разных дорожных условиях (авт/ч):

,                                                       (3.19)

где Рд - пропускная способность полосы движения, авт/ч; , ... - коэффициенты снижения пропускной способности, учитывающие состав движения, характеристики железнодорожных переездов к дорожные условия в зоне переезда. :

3.33. Коэффициенты снижения пропускной способности приведены в табл. 3.9-3.13.

Раздел 4
ПРОПУСКНАЯ СПОСОБНОСТЬ ПЕРЕСЕЧЕНИЙ В РАЗНЫХ УРОВНЯХ

общие положения

4.1. Пропускная способность пересечений в разных уровнях определяется пропускной способностью съездов. Основными факторами, влияющими на пропускную способность съездов транспортных развязок, являются: возможность влияния автомобилей в основной поток при выходе со съезда и размеры геометрических элементов съезда.

Пропускную способность съездов, имеющих различные планировочные решения участков слияния, оценивают по табл. 4.1, составленной для случая, когда количество тяжелых автомобилей в транспортном потоке не превышает 10-15%.

4.2. На многополосных дорогах основным считается поток автомобилей на правой внешней полосе. Интенсивность движения в местах слияния следует определять, учитывая следующие факторы: распределение интенсивности движения по съездам в соответствии с картограммой; распределение интенсивности движения по полосам проезжей части многополосной дороги. Для четырехполосных автомобильных магистралей это распределение следующее:

Общая интенсивность движения

в одном направлении,

авт/ч                 200    403    600    800    1000    1200    1400    1600    1800    2000                          2200

Интенсивность по внешней

правой полосе,

авт/ч                 180    310    410    510    600      700      800      900      1000    1010                          1190

Таблица 4.1

Уровень удобства на главной дороге

Интенсивность движения на правой полосе главной дороги, авт/ч

Пропускная способность съезда, авт/ч

при наличии переходно-скоростной полосы

без переходно-скоростной полосы

А

100

900

850

300

350

660

Б

500

800

500

700

750

450

В

900

700

350

Г

1000

600

250

Таблица 4.2

Уровень удобства движения на съезде

z

Скорость на правой полосе четырехполосной магистрали в зоне съезда, % от скорости на пересечении

съезды с переходно-скоростными полосами

съезды без переходно-скоростных съездов

А

<0,2

90-100

80-90

Б

0,2-0,45

85-90

60-70

В

0,45-0,7

70-80

40-50*

Г-а

0,7-1,0

45-55

30-40**

Г-б

0; 1,0

35-10

15-25***

*Наблюдаются остановки отдельных автомобилей на внешней полосе, обгоны затруднены.

**Наблюдаются кратковременные заторы на внешней полосе и остановки отдельных автомобилей на внутренней полосе.

*** Наблюдаются заторы на обеих полосах движения.

Промежуточные значения определяют интерполяцией.

4.3. Назначая уровень удобства движения на пересечениях, следует учитывать, что с ростом интенсивности на съезде и приближении ее к пропускной способности съезда условия движения на главной дороге и пересечении ухудшаются (табл. 4.2).

4.4. Увеличения пропускной способности участков примыкания съездов можно достигнуть, применяя переходно-скоростные полосы или выделяя отдельные полосы на главной дороге.

Устройство дополнительных полос на съездах существенного эффекта не дает, так как в зоне слияния они работают как однополосные. Однако на съездах длиннее 300 м, расположенных на подъеме с уклоном более 30‰. дополнительная полоса целесообразна для повышения пропускной способности и удобства движения быстроходных автомобилей.

оценка пропускной способности

4.5. Пропускная способность съездов пересечений - в разных уровнях, выходные участки которых имеют зоны слияния потоков автомобилей, определяется в такой последовательности:

устанавливают по формуле (3.1) максимальную интенсивность движения на съезде  из условий возможности вливания в основной поток интенсивностью Nmах*;

*В формуле (3.1) обозначение Рп соответствует , Nгл соответствует N0.

устанавливают пропускную способность съезда Рс по формуле (2.1), используя соответствующие планировке съезда размеры частных коэффициентов, учитывая влияние геометрических элементов съезда и состава потока автомобилей па съезде. При этом в формуле (2.1) за Рmах принимают значение, рекомендуемое в п. 2.3; для одной полосы четырехполосной автомагистрали сравнивают Nmах и Рс. Если Рс оказалось больше , за пропускную способность съезда принимают . Когда Рс меньше , за пропускную способность съезда принимают Рс, так как в этих случаях пропускная способность съезда ограничивается не участком слияния потоков, а участками с кривыми, подъемами и т. д.

4.6. Пропускная способность съездов, выходные участки которых не являются зонами слияния потоков, а представляют собой участки перехода к дополнительной полосе проезжей части главной дороги, определяется как пропускная способность одной полосы движения (Рmах=200 легковых авт/ч) с учетом значений четных коэффициентов снижения пропускной способности согласно пп. 2.4 и 2.5.

Рис. 4.1. Зависимость граничного интервала времени от интенсивности движения по основной полосе:

1 - вливание после остановки, 85% обеспеченности; 2 - то же, 50%; 3 - скорость вливающихся автомобилей 25- 35 км/ч, 85% обеспеченности; 4 - вливание с полосы ускорения, 85% обеспеченности

Рис. 4.2. Влияние угла вливания на граничный промежуток времени:

1 - вливание в основной поток после предварительной остановки, N0=150 авт/ч; 2 - то же, без остановки, N0=150 авт/ч: 3 - то же, N0=300 авт/ч; 4 - то же, N0=150 авт/ч

4.7. Граничный промежуток времени Dtгр при вливании определяют по графикам (рис. 4.1 и 4.2).

Для левоповоротных съездов пересечений типа полный клеверный лист, не имеющих переходно-скоростных полос, коэффициент А определяют в зависимости от интенсивности движения  на смежном левоповоротном съезде, по которому едут автомобили, уходящие с главной дороги (табл. 4.3).

Для левоповоротных съездов пересечений типа полный клеверный лист, имеющих переходно-скоростные полосы, коэффициент А принимают равным:

Тяжелые автомобили в основном потоке, %.............. 10-15         20-25          30-35

А...................................................................................... 0,60            0,56            0,48

В табл. 4.4 приведены данные о размере коэффициента А для следующих случаев: левоповоротные съезды пересечений всех типов, за исключением пересечений типа полный клеверный лист; правоповоротные съезды пересечений всех типов.

Другие коэффициенты и параметры, входящие в формулу (3.1), определяют:

коэффициент В - по графику рис. 4.3; коэффициент С=1-(А+В); b1 - по графику рис. 4.4; b2=1,8; b3=3,0; dt принимают равной 3,2 с, когда легковых автомобилей в потоке на съезде более 60%, и 3,6 с, если их менее 50%.

Таблица 4.3

Интенсивность движения, авт ч

Коэффициент А при наличии на основной полосе тяжелых автомобилей, %

10-15

15-20

20-25

25-30

100

0,70

0,67

0,62

0,60

150

0,63

0,59

0,55

0,52

200

0,59

0,55

0,48

0,45

250

0,57

0,51

0,45

0,40

³300

0,53

0,48

0,42

0,38

Примечание. Промежуточные значения определяют интерполяцией (то же, для данных табл. 4.4).

Рис. 4.3. Зависимость между коэффициентами А и В для дорог с четырьмя полосами движения

4.8. Для оценки пропускной способности петель левоповоротных съездов пересечении типа полный клеверный лист из условий возможности вливания используют график (рис. 4.5).

Таблица 4.4

Расстояние от предыдущего съезда, м

Коэффициент А* при

Расстояние от предыдущего съезда, м

Коэффициент А* при

отсутствии переходно-скоростных полос

наличии переходно-скоростных полос

отсутствии переходно-скоростных полос

наличии переходно-скоростных полос

200

0,57-0,63

0,77-0,88

800

0,83-0,91

0,90-0,96

400

0,63-0,70

0,82-0,92

1000

0,87-0,92

0,90-0,96

600

0,72-0,82

0,87-0,96

1200

0,88-0,93

0,90-0,96

*Меньшее значение коэффициента соответствует присутствию к потоке на основной полосе 20-25% тяжелых автомобилей, большая - 10-15%.

4.9. Если радиусы кривых в плане на съездах пересечений в разных уровнях меньше 30 м, пропускную способность определяют с учетом кривизны с помощью номограмм (рис. 4.6-4.9).

Рис. 4.4. Зависимость коэффициента b1 от коэффициента А

Рис. 4.5. Пропускная способность петель левоповоротных съездов пересечения клеверный лист:

1 - теоретическая пропускная способность, А =1; 2 - практическая пропускная способность. А=0,4; 3 - практическая пропускная способность, А=1

Рис. 4.6. Номограмма для определения пропускной способности съездов без переходно-скоростных полос при рR=0,06¸0,08

Рис. 4.7. Номограмма для определения пропускной способности съездов с переходно-скоростной полосой перед съездом при рR=0,06¸0,08

Рис. 4.8. Номограмма для определения пропускной способности за съездом при рR=0,06¸0,08

Рис. 4.9. Номограмма для определения пропускной способности съездов с переходно-скоростными полосами с обеих сторон съезда при рR=0,06¸0,08

Кривизна рR:

для съездов с постоянными радиусами, в плане

,                                                             (4.1)

или ;                                                            (4.2)

для съездов любой конфигурации

.                                                               (4.3)

где R - радиус съезда, м; a - угол поворота, радианы: L - длина съезда, м.

4.10. Пропускную способность пересечения в целом определяют как сумму пропускных способностей отдельных съездов.

уровни удобства движения на съездах транспортных развязок

4.11. На участке примыкания въезда к автомобильной магистрали коэффициент загрузки движением устанавливают отдельно для каждой полосы автомобильной магистрали. На ее внешней полосе коэффициент загрузки движением определяют из соотношения

,                                                            (4.4)

где  интенсивность движения на правой (внешней) полосе магистрали, авт/ч; Nc - интенсивность движения на съезде, авт;ч;  -пропускная способность первой (внешней) полосы магистрали, авт/ч.

4.12. Коэффициент загрузки съезда движением определяют как отношение интенсивности движения на внешней полосе магистрали, в которую вливаются автомобили съезда, к пропускной способности этой полосы

.                                                                     (4.5)

4.13. При определении значений , zв и zc - по известной интенсивности движения на крайней правой полосе второстепенной дороги  и интенсивности на съезде следует использовать номограммы, представленные на рис. 4.6-4.9.

4.14. В табл. 4.5 приведены характеристики условий движения на съездах пересечений и разных уровнях при разных уровнях удобства движения на съезде. В приложении 10 даны примеры расчета пропускной способности пересечений и разных уровнях.

Таблица 4.5

Уровень удобства движения на съезде

zc

Характеристика движения потока автомобилей на съезде

Состояние потока автомобилей на съезде

Удобство работы водителя на выходе со съезда

А

0,2

Движение автомобилей по съезду свободное. Задержек автомобилей при выходе со съезда нет

Свободное

Удобно

Б

0,2-0,45

Автомобили движутся по съезду группами (2-3 автомобиля). Выход со съезда при наличии переходно-скоростной полосы происходит сходу, без переходно-скоростной полосы - затруднен

Частично связанное

Малоудобно

В

0,45-0,7

На съезде постоянно находится группа автомобилей. Интервалы между автомобилями незначительны. Выход со съезда сходу возможен только при наличии переходно-скоростной полосы

Связанное

Неудобно

Г

0,7-1,0

Большая часть съезда заполнена автомобилями. Поток движется с остановками, возникают заторы. Выход автомобиля со съезда сходу невозможен

Плотное насыщенное

Очень неудобно

£1,0

Весь съезд заполнен автомобилями, очередь автомобилей выходит на второстепенную дорогу. Затор. Возможен выход со съезда одиночных автомобилей

То же

То же

Раздел 5
ПРОПУСКНАЯ СПОСОБНОСТЬ СЛОЖНЫХ УЧАСТКОВ ДОРОГ

пропускная способность участков в пределах малых населенных пунктов сельского типа

5.1. Участки дороги в пределах малых населенных пунктов сельского типа характеризуются пониженной пропускной способностью вследствие влияния следующих факторов: неорганизованного движения пешеходов через дорогу, наличия близкой застройки, автомобилей и автобусов, стоящих на обочине или на специальных площадках, включения в состав потока сельскохозяйственных машин и т. д.

5.2. Связь между скоростью и плотностью движения для участков дорог в пределах малых населенных пунктов сельского типа описывают уравнением

.                                                          (5.1)

В табл. 5.1 приведены параметры формулы (5.1) для участков с различной протяженностью населенного пункта и при расстоянии от кромки проезжей части по линии застройки 15-20 м.

1К малым отнесены населенные пункты сельского типа, насчитывающие до 1 тыс. жителей и имеющие линейную однорядную форму застройки (деревни-улицы).

Таблица 5.1

Длина участка в пределах населенного пункта, км

v0

 

g

0,3-0,7

68,71

2,15

4,80

0,7-1,25

64,37

2,03

4,85

1,25-1,75

60,20

1,89

4,90

1,75-2,25

55,90

1,75

5,00

Таблица 5.2

Интенсивность движения пешеходов в часы пик, чел-ч

К1 при числе легковых автомобилей в потоке, %

100

70

50

<100

4,00

1,00

0,90

100-200

0,95

0,90

0,80

200-300

0,90

0,80

0,70

300-400

0,80

0,70

0,60

5.3. При определении пропускной способности участков в пределах малых населенных пунктов сельского типа максимальную плотность потока автомобилей можно принимать равной максимальной плотности на двухполосной дороге (см. п. 2.2).

5.4. Для дорог с проезжей частью шириной 7-7,5 м и обочинами не уже 3 м свободная скорость автомобилей v0 в населенных пунктах, расположенных на прямолинейных горизонтальных участках, может быть получена расчетным путем

,                                          (5.2)

где L - длина участка в пределах населенного пункта (0,5£L£2,5 км); l - расстояние от кромки проезжей части до линии застройки м (5£L£25 км).

5.5. На снижение пропускной способности и скоростей автомобилей большое влияние оказывают пешеходы, переходящие проезжую часть. Пешеходный переход является «узким» местом дороги в пределах населенного пункта. Скорость автомобилей на пешеходном переходе

,                                          (5.3)

где Nп - интенсивность движения пешеходов в часы «пик», чел-ч; N - интенсивность движения автомобилей, авт/ч; v0 - свободная скорость движения в населенном пункте, км/ч.

Зависимость (5.3) применима для наиболее характерного пешеходного потока (18-20% детей, 50-60% взрослых, 20-35% пожилых людей).

5.6. Для пешеходных переходов, где наблюдается изменение процентного соотношения пешеходов по группам, необходимо пользоваться зависимостью

,                     (5.4)

где Nдет - интенсивность движения детей через дорогу; Nвзр - то же, взрослых людей; Nст - то же, пожилых людей.

5.7. На снижение скорости автомобилей в населенных пунктах оказывают влияние стоянка автомобилей и ее планировочное решение:

Снижение скорости, км/ч

Стоянка удалена от кромки проезжей части, подъезды к ней оборудованы переходно-скоростными полосами.............................................................................................. практически нет

Стоянка удалена от кромки проезжей части, подъезды к ней не оборудованы переходно-скоростными полосами .............................................................................................. 10-20

Стоянка отсутствует, автомобили стоят на обочине .............................................................................................. 20-40

Примеры расчета пропускной способности дорог в пределах населенных пунктов даны в приложении 11.

5.8. Скорость автомобилей на участках в пределах населенных пунктов сельского типа, имеющих кривые в плане

,                                                         (5.5)

где K=1000/R; R - радиус кривой в плане (50>R>100 м).

5.9. Пропускная способность автомобильной дороги в пределах малого населенного пункта сельского типа, расположенного на прямом горизонтальном участке,

,                                 (5.6)

где k1 - коэффициент, учитывающий влияние пешеходного перехода; k2 - коэффициент, учитывающий влияние стоянки у пункта обслуживания; k3 - коэффициент, учитывающий влияние кривой в плане.

Пропускная способность участка в пределах малого населенного пункта сельского типа может быть определена в первом приближении по графику (рис. 5.1).

5.10. При определении пропускной способности участка дороги в зоне пешеходного перехода в формуле (5.6) используют коэффициент снижения пропускной способности (табл. 5.2.).

Пропускная способность изменяется на расстоянии 50 м в каждую сторону от пешеходного перехода.

5.11. Инженерное оборудование пешеходных переходов повышает пропускную способность участков дороги. Так, для зоны пешеходного перехода в разных уровнях значение коэффициента снижения пропускной способности равно 1.

5.12. При определении пропускной способности участка дороги в зоне стоянки автомобилей в формуле (5.6) используют коэффициент k2.

Пропускная способность изменяется на расстоянии 50 м в каждую сторону от границы стоянки автомобилей у пункта обслуживания.

                                                                                                                                                                                                                  k2

Стоянка удалена от кромки, проезжей части, имеются переходно-скоростные полосы                                                                                                                          1,0

Стоянка оборудована за счет уширения обочины                                                                                                                          0,8

Оборудованной стоянки нет                                                                                                                          0,6

Примечание. Если оборудованная стоянка расположена с одной стороны проезжей части и не запрещен левый поворот, необходимо коэффициент уменьшить в 1,5 раза.

5.13. При определении пропускной способности участка дороги, расположенного на горизонтальной кривой, следует пользоваться коэффициентом снижения, представленным в табл. 5.3.

Рис. 5.1. Зависимость пропускной способности дороги от длины населенного пункта и расстояния края проезжей части до линии застройки:

5…>25 - расстояние до застройки, м

Таблица 5.3

Длина населенного пункта, км

k2 при радиусе горизонтальной кривой, м

100

100-250

250-450

450-600

500

0,3-0,7

0,81

0,89

0,95

0,96

0,97

0,7-1,25

0,84

0,92

0,97

0,98

0,98

1,25-1,75

0,96

0,94

097

1,0

1,0

1,75-2,25

0,88

0,95

0,98

1,0

1,0

2,25-2,75

0,90

0,96

1,0

1,0

1,0

пропускная способность мостовых переходов на двухполосных дорогах

5.14. Пропускная способность мостовых переходов зависит от конструкции и состояния проезжей части мостов и подходов к ним.

На мостовых переходах изменяется режим движения автомобилей, что вызывает снижение средней скорости движения, увеличение плотности потока и в итоге приводит к снижению пропускной способности таких участков дорог.

5.15. Пропускная способность полосы движения на мостовом переходе зависит от дорожных условий: длины моста (для больших мостов), состояния дорожного покрытия; продольного уклона и радиусов кривых в плане на подходах к мосту; продольного профиля моста; расстояния видимости; присутствия придорожных строений на подходах к мосту. В значительной степени на фактическую пропускную способность влияют: состав транспортного потока; наличие средств регулирования дорожного движения; наличие пересечении в одном уровне на подходах к мосту и т. д.

5.16. Пропускную способность мостов и подходов к ним следует определять раздельно. Пропускную способность подходов к мостам необходимо оценивать как для участков автомобильных дорог, согласно рекомендациям раздела 3.

5.17. Пропускная способность полосы движения моста, расположенного на прямой в плане и при продольном уклоне менее 10‰,

,                                    (5.7)

где Г - габарит моста, м (Г7¸Г13); L - длина моста, м (100<L<300 м).

При определении пропускной способности моста состав движения следует учитывать в соответствии с п. 2.4.

5.18. Пропускная способность мостов, расположенных на кривых в плане и имеющих продольные уклоны более 10 ‰,

,                                                                    (5.8)

где Р - пропускная