|
ВЕДОМСТВЕННЫЕ СТРОИТЕЛЬНЫЕ
НОРМЫ УЧЕТ ДЕФОРМАЦИЙ РЕЧНЫХ РУСЕЛ
И БЕРЕГОВ ВОДОЕМОВ ВСН 163-83 Миннефтегазстрой Государственный комитет СССР
по гидрометеорологии и контролю природной среды Министерство строительства
предприятий нефтяной и газовой промышленности Министерство газовой
промышленности Министерство нефтяной
промышленности Государственный комитет РСФСР по обеспечению нефтепродуктами Ленинград Гидрометеоиздат 1985 РАЗРАБОТАНЫ Государственным гидрологическим институтом
(ГГИ) Госкомгидромета (руководители темы: канд. техн. наук З.Д. Копалиани, д-р
техн. наук А. С. Судольский, д-р техн. наук Б. Ф. Снищенко; ответственные
исполнители: д-р техн. наук Н. Е. Кондратьев, д-р геогр. наук И. В. Попов,
канд. геогр. наук О. Г. Григорьева, канд. техн. наук В. Ф. Николаев канд. техн.
наук А. Б. Клавен) и Всесоюзным научно-исследовательским институтом по
строительству магистральных трубопроводов (ВНИИСТ) Миннефтегазстроя
(руководители темы: канд. техн. наук Б. М. Кукушкин и канд. техн. наук М. А.
Камышев; ответственный исполнитель канд. техн. наук А. Г. Ратнер) с участием
Уфимского нефтяного института Минвуза СССР, Московского института
нефтехимической и газовой промышленности Минвуза СССР, Всесоюзного
научно-исследовательского института по сбору, подготовке и транспорту нефти и
нефтепродуктов Миннефтепрома, Всесоюзного строительно-монтажного объединения
Союзподводтрубопроводстроя Миннефтегазстроя, Украинского
научно-исследовательского института гидротехники и мелиорации Минводхоза СССР ВНЕСЕНЫ Всесоюзным
научно-исследовательским институтом по строительству магистральных
трубопроводов (ВНИИСТ) Миннефтегазстроя Согласовано с Госстроем СССР
27 февраля 1984 г., № ДП-974-1
Настоящие нормы
распространяются на определение расчетных характеристик деформаций речных русел
и берегов водоемов и необходимых для них изысканий при проектировании подводных
переходов магистральных трубопроводов через указанные водные объекты, а также
на определение требований, предъявляемых к ремонтным обследованиям
эксплуатируемых переходов. Настоящие нормы предъявляют
повышенные требования к организационно-техническому уровню гидрологических,
гидрометеорологических и гидроморфологических изысканий, которые должны
выполняться с применением прогрессивных методов, современных приборов и
оборудования, обеспечивающих возможность составления надежных прогнозов
деформаций русел рек и переформирований берегов водоемов. Настоящие нормы
не распространяются на подводные переходы, подлежащие строительству на участках
морских русел рек, на селеопасных реках, на озерах шириной более 10 км, на
морских акваториях, на каналах.
1. ОБЩИЕ ПОЛОЖЕНИЯ1.1. Оценку русловых
деформаций следует выполнять на всех этапах проектирования, но с различной
степенью детальности. Исходные материалы, используемые для составления
прогноза, должны обеспечивать необходимую его точность. 1.2. Для оценки фактических
русловых деформаций и переформирований берегов водоемов на участке перехода
следует пользоваться имеющимися картографическими и топографическими
материалами, аэрофотосъемками, землеустроительными планами, лоцманскими картами
разных лет издания, материалами гидрометрических измерений, выполняемых на
гидрологических постах и станциях Госкомгидромета, русловыми и береговыми
съемками бассейновых управлений пути Минречфлота РСФСР, материалами предыдущих
изысканий проектных организаций, а также данными обследований параллельных
ниток действующих трубопроводов. 1.3. Для составления
прогноза руслового или берегового процессов рек или водоемов в малоизученных
районах, на участках с интенсивными глубинными и плановыми деформациями, а
также в случаях, когда к надежности подводных трубопроводов предъявляются
особые требования, либо когда заглубление трубопроводов связано с большими
затратами и технологическими трудностями, следует проводить детальные
исследования руслового процесса или динамики береговой зоны водоемов по
специальным программам с привлечением специализированных организаций. 1.4. В особо ответственных
случаях проектирования переходов магистральных трубопроводов необходимо
предусматривать проведение лабораторных исследований на гидравлических моделях
участка реки или водоема. 1.5. Проектирование и
строительство перехода магистрального трубопровода через реку или водоем должны
выполняться с учетом требований охраны окружающей среды и в том числе водных
ресурсов. 1.6. Прогнозирование
деформаций русел рек следует выполнять на основании комплексных исследований
гидрологического режима реки и морфологического строения русла с учетом типа
руслового процесса, геологических условий, динамики развития целостных
морфологических структур русла и поймы: макроформ (пойменных массивов, речных
излучин, островов), мезоформ (ленточных гряд, побочней, осередков), микроформ
(гряд). 1.7. Прогнозирование
деформаций берегов водоемов следует выполнять на основании комплексных
исследований гидрометеорологического режима водоема и морфологического строения
его берегов, геологических условий и динамики переформирования береговой зоны. 1.8. При выборе створа
подводного перехода следует принимать наиболее благоприятный по режиму русловых
или береговых деформаций вариант, обеспечивающий наилучшие условия
строительства и эксплуатации перехода. Таблица 1 1.9. Оценка влияния всех типов гидротехнических сооружений на русловой
режим участка перехода трубопровода должна производиться в соответствии с
общими принципами взаимодействия руслового процесса и инженерных сооружений. 1.10. Прогноз русловых и
береговых деформаций в первую очередь должен учитывать разработку карьеров в
руслах рек для добычи нерудных материалов, а также дноуглубительные и
русловыправительные работы на судоходных реках, способные изменить естественный
гидрологический и русловой режимы рек на участке перехода в период эксплуатации
трубопровода. 1.11. При прогнозе русловых
деформаций следует учитывать инженерные мероприятия, предусматриваемые с целью
закрепления береговых склонов и грунта засыпки над трубопроводом в границах
раскрытия подводных траншей. 1.12. Прогнозу и расчету
деформаций русла в створе перехода трубопровода должна предшествовать оценка
общих тенденций естественного изменения участка реки и изменения, вызываемого
воздействием гидротехнических сооружений, расположенных на реке выше или ниже
по течению от размещаемого трубопровода. 1.13. При оценке общих
тенденций необходимо установить: - характер взаимодействия
инженерных сооружений и руслового процесса на участке перехода трубопровода в
соответствии с классификацией сооружений; - вид необходимого прогноза
руслового процесса в соответствии с классификацией русловых прогнозов; - основной прогнозируемый
элемент руслового процесса в соответствии с классификацией прогнозируемых
элементов и характеристик руслового процесса. 1.14.
При оценке характера взаимодействия инженерных сооружений и руслового процесса необходимо
учитывать, что все инженерные сооружения и мероприятия, проводимые на реках,
разделяются на два класса: активные и пассивные (табл. 1). 1.15. При оценке влияния
активных и пассивных сооружений на характер и интенсивность русловых деформаций
в створах переходов следует учитывать, что: - зона влияния на русловой
процесс сооружений I категории простирается по реке выше и ниже их
местоположения, захватывая участки реки, состоящие из нескольких макроформ; - зона влияния на русловой
процесс сооружений II категории ограничивается одной макроформой или
несколькими мезоформами; - возведение в реке
пассивных сооружений не приводит к изменению русловых макроформ и мезоформ, а
касается лишь перестройки русловых микроформ в непосредственной близости от
сооружения или в его пределах. 1.16. При общей оценке
естественного изменения руслового режима участка перехода и изменения,
вызванного влиянием гидротехнических сооружений, следует руководствоваться
рекомендациями, помещенными в рекомендуемом приложении 23. УЧЕТ ДЕФОРМАЦИЙ РЕЧНЫХ РУСЕЛ НА УЧАСТКАХ ПОДВОДНЫХ ПЕРЕХОДОВ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ ЧЕРЕЗ РЕКИ2. ЗАДАЧИ И СОСТАВ ИЗЫСКАНИЯ2.1. Изыскательские работы
на участках подводных переходов трубопроводов, необходимые для прогнозирования
и учета деформаций русел и берегов водоемов, следует выполнять поэтапно
(предполевые, полевые, камеральные) в соответствии с задачами, подлежащими
решению и применительно к определенным стадиям проектирования. 2.2. На предполевом этапе
должны решаться следующие задачи: - предварительный выбор
участков расположения перехода на трассе трубопровода; - сбор и анализ материалов
картографической изученности; - определение типа руслового
процесса на предполагаемых участках расположения перехода через реку согласно
рекомендуемым приложениям 1, 2; - предварительная
качественная оценка характера глубинных и плановых деформаций русла и поймы, а
также их количественныx измерителей (при наличии
необходимых материалов); - сбор и анализ
опубликованных данных по гидрологическому режиму реки на участке перехода; - составление программы
полевых изысканий. 2.3. Предполевой этап должен
заканчиваться составлением обзорной схемы участка реки с указанием
местоположения вариантов перехода, обозначением границ меженного русла, поймы,
коренных берегов долины, выделением целостных морфологических образований и фрагментов
русла (побочней, осередков, островов, перекатов, плёсовых лощин, затонов,
проток), нанесением средней Геометрической линии меженного русла и линии
фарватера, обозначением хорошо опознаваемых ориентиров на местности, указанием
расстояний до ближайших гидрологических постов, гидротехнических сооружений,
мостов. Масштаб схемы должен быть не менее: 1:10000 - для рек шириной до
150 м, 1:25000 - для рек шириной от
150 до 500 м, 1:50000 - для рек шириной
более 500 м. Длина участка реки на схеме
должна быть не менее 20 ширин русла и включать не менее 3-4 целостных русловых
форм. Указанные материалы вместе с
обзорной схемой служат обоснованием выбора возможных вариантов размещения
перехода. 2.5. На этапе полевых
изысканий должны решаться следующие задачи: - установление типа
руслового процесса на участке перехода; - определение наинизших
отметок плёсовых лощин выше створов перехода; - определение состава донных
наносов и границ залегания слаборазмываемых грунтов; - измерение геометрических и
динамических характеристик донных гряд; - определение сезонных
изменений наинизших отметок плёсовых лощин (при годовом цикле наблюдений); - определение расчетных
уровней и скоростей течения в паводок и межень; - определение скорости
смещения целостных морфологических образований русла (мезо- и макроформ) при
годичном цикле наблюдений. На этапе полевых изысканий
окончательно выбирают створы перехода, подготавливают исходные материалы для
построения линии возможного размыва русла на расчетный срок эксплуатации трубопровода
и выполняют приближенные расчеты заносимости подводных траншей в период
строительства перехода. 2.6. При полевых изысканиях
должны быть выполнены следующие работы: - рекогносцировочное
гидроморфологическое обследование участка реки в меженный период; - наблюдения за уровнем воды
и измерения расходов воды на временных постах; - инженерно-геологическое
обследование участка перехода; - русловая съемка; - взятие проб донных наносов
на участке перехода; - измерения поля
поверхностных скоростей во время половодья и межени наземным или
аэрогидрометрическим методами; - измерения скорости потока
на вертикалях по намеченным створам (во время половодья и межени); - повторные промеры глубин
русла по поперечникам и продольникам в различные фазы водного режима на
подъеме, при прохождении пика и спаде половодья и паводков. 2.8. На камеральном этапе
изысканий составляют прогноз глубинных и плановых деформаций русла на период
эксплуатации перехода с построением проектного профиля возможного размыва
русла, а также прогноз зависимости подводных траншей в период строительства. 2.9. На
завершающей стадии камерального этапа изысканий для составления окончательного
прогноза русловых деформаций наряду с материалами предполевого и полевого этапов
изысканий, указанными в п. 2.4 и 2.7, необходимо иметь следующие материалы: - совмещенные планы и
профили сезонных деформаций русла (для годичного цикла наблюдений); - план поверхностных
скоростей течения на участке перехода в период половодья и межени (при годичном
цикле наблюдений); - совмещенные продольные
профили дна по створам перехода; - типовые гидрографы стока
воды для маловодного, среднего и многоводного годов; - кривые обеспеченности
расходов и уровней воды; - графики связи уровней и
максимальных глубин по материалам многолетних наблюдений на изучаемом участке
реки или ближайшем гидростворе Госкомгидромета. 2.10. Для составления
прогноза заносимости подводных траншей при строительстве перехода необходимо
иметь следующие материалы: - продольные профили дна
реки по створам перехода; - распределение средних на
вертикалях скоростей течения в створах перехода по ширине реки; - данные анализа
гранулометрического состава донных наносов на участке перехода. 2.11. Прогнозирование
русловых деформаций следует выполнять с использованием следующих характеристик: - средней скорости смещения
мезоформ (ленточных гряд, побочней, осередков) за многолетний период; - средней скорости размыва
берегов за многолетний период; - средней сезонной
деформации плёсов; - максимальной
прогнозируемой глубины русла в створе за срок службы перехода. Необходимость выполнения
расчетов указанных характеристик определяется для каждого перехода в
отдельности в зависимости от типа руслового процесса, размеров реки,
геологических условий, ограничивающих деформации русла, и конструктивных
особенностей перехода. 2.12. Отчет об инженерных
изысканиях на участке перехода в составе раздела "Инженерно-гидрометеорологические
изыскания" должен иметь главу "Прогноз деформаций русла (берегов
водоемов)", включающую параграфы: а) гидроморфологическая
характеристика участка перехода; б) тип руслового процесса; в) деформации русла и поймы; г) профиль возможного
размыва русла. 2.13. В параграфе
«Гидроморфологическая характеристика участка перехода» приводят обзорную схему
и краткое описание морфологического строения участка реки и данные о границах
залегания трудноразмываемых грунтов и базального слоя в пределах зоны
возможного заглубления подводного трубопровода; дают оценку устойчивости
берегов в зоне переменного уровня, приводят результаты анализа характеристик
водного режима (продолжительности основных гидрологических фаз, обеспеченность
уровней затопления русловых форм и поймы, скоростей течения потока в паводок и
в межень, диапазоны расходов воды с активной фазой движения донных наносов). 2.14. В параграфе "Тип
руслового процесса" приводятся опознавательные признаки данного типа
руслового процесса и качественная характеристика глубинных и плановых
деформаций (направление деформаций, тенденции их развития). 2.15. В параграфе
"Деформации русла и поймы" приводятся фактические данные о
количественных показателях многолетних и сезонных деформаций на участке перехода,
на смежных участках русла, на реках-аналогах, а также рассчитанные значения
деформаций (при применении расчетных методов). 2.16. В параграфе
"Профиль возможного размыва русла" дается краткое описание методики
его построения, приводятся исходные данные, принятые для построения, и
оценивается их точность. 2.17. К соответствующим
параграфам главы должны быть приложены материалы, перечисленные в п. 2.4, п. 2.7, п. 2.9. 3. ОРГАНИЗАЦИЯ ИЗЫСКАНИЙ3.1. Объем
инженерно-гидрометеорологических изысканий, необходимых для составления
прогноза русловых деформаций, определяется в задании на изыскания. Сбор и анализ материалов, необходимых
для прогнозирования русловых деформаций, следует продолжать в течение всего
периода изысканий. В зависимости от ширины
реки, типа руслового процесса, интенсивности русловых деформаций, а также
имеющихся материалов, изыскания могут быть детальными или выполняться в
сокращенном объеме. 3.2. Детальные изыскания
следует выполнять для переходов через судоходные и лесосплавные реки, а также
реки с интенсивными глубинными и плановыми деформациями русла. Детальность
изысканий для других случаев определяют в зависимости от полноты и качества
материалов, собранных па предполевом этапе. 3.4. Изыскания следует
проводить в одну или две стадии соответственно стадиям проектирования,
указанным в задании заказчика с учетом сложности перехода и заданных сроков
представления проектных материалов. 3.5. Полевые изыскания в
сокращенном объеме (п. 3.3) рекомендуется выполнять при одностадийном
проектировании. Они должны включать следующие работы: - рекогносцировочное
обследование участка перехода; - промеры продольного профиля
реки на стрежне потока; - промеры по двум-трем
поперечникам русла в местах больших глубин на продольном профиле реки; - промеры глубин по створам
перехода; - измерение скоростей
перехода в стрежневой зоне потока в створе перехода. Указанным работам должны
предшествовать полевые инженерно-геологические изыскания на участке перехода,
на основании которых устанавливают наличие слаборазмываемых грунтов в русле. 3.6. Двухстадийное
проектирование и детальные изыскания следует выполнять для переходов: - на малоизученных участках
рек шириной русла более 100 м; - на реках шириной русла
более 50 м, протекающих в районе Крайнего Севера и многолетней мерзлоты; - на реках с подвижным
малоустойчивым руслом, сложенным легкоразмываемыми грунтами; - на участках многорукавных
русел; - на крупных реках шириной
более 300 м. 3.7. Общий срок детальных
изысканий (с учетом предполевого, полевого и камерального этапов) при
двухстадийном проектировании должен составлять не менее года. 3.8. При двухстадийном
проектировании на стадии составления технического проекта должен быть выполнен
полный комплекс инженерных изысканий, необходимых для выбора створа и
построения профиля возможного размыва русла. На стадии составления рабочих
чертежей должны быть закончены изыскания, требующие годичного цикла наблюдений:
определены сезонные деформации, уточнены характеристики скоростного,
уровенного, ледового и руслового режимов для различных фаз водности. 3.9. Длина участка, для
которого требуется выполнения русловой съемки или продольного промера, должна
быть определена на предполевом этапе изысканий и указана в программе изысканий. 3.10. При проведении полевых
изысканий должны быть закреплены на местности точки планово-высотной магистрали
и контрольные
створы для наблюдения за характером и интенсивностью русловых деформаций в
процессе эксплуатации перехода. Места расположения контрольных точек и створов
должны быть указаны в проектной документации. 4. ВЫБОР УЧАСТКА И СТВОРОВ ПОДВОДНОГО ПЕРЕХОДА- располагать переход на
прямолинейных или слабоизогнутых участках рек с минимальной шириной поймы; - пересекать реку под углом,
близким к прямому; - пересекать широкие поймы
на участке с минимальным числом стариц, озер, болотистых участков, не допуская
крутых поворотов трассы; - поймы рек, подлежащие
затоплению после возведения плотин, пересекать по прямой линии без углов
поворота; - по возможности избегать
пересечений трассы с участками многорукавных русел и излучин, имеющих
спрямляющие протоки; - располагать переход в зоне
наименьшего влияния сооружений I и II категорий; - в нижних бьефах гидроузлов
размещать переход за пределами зоны активного однонаправленного размыва русла в
удалении от подходных каналов к шлюзам. 4.2. Выбор участка и створов
подводного перехода следует осуществлять в несколько этапов. На первом этапе при
определении направления магистрального трубопровода следует выбрать
предварительный вариант расположения перехода на основании имеющихся
картографических, аэрофотосъемочных, топографо-геодезических планов участков
масштаба 1:10000-1:100000 (в зависимости от ширины русла), а также литературных
источников и справочных пособий, содержащих сведения о гидрологических,
геологических и гидроморфологических условиях в районе проектируемого перехода. 4.3. Выбор участка перехода
на втором этане осуществляется комиссией при обязательном участии организаций,
выполняющих изыскания, проектирование и строительство перехода с привлечением
специалистов, непосредственно занимающихся прогнозированием русловых
деформаций. 4.4. В дополнение к
материалам, собранным на предварительном этапе изысканий, представляются
материалы рекогносцировочного обследования предварительно намеченного участка
перехода. В качестве картографической
основы при рекогносцировочном обследовании следует использовать
крупномасштабные карты или планы масштаба 1:10000-1:25000. При отсутствии карт
пли планов необходимо составить схематический план участка реки. Рекогносцировочное
обследование следую проводить при низком уровне воды в реке. В ходе
обследования на план (схему) участка наносят границы подмываемых участков
берега, местоположение мезоформ речного русла (побочни, осередки, острова,
косы), гребни перекатов, пляжей, устанавливается характер строения берегов,
крупность донных наносов, наличие растительности на берегах и русловых формах,
определяются места возможного образования зажоров или заторов льда. 4.5. С целью получения
дополнительных сведений о режиме русловых деформаций в многолетнем разрезе
(темпы размыва берегов, смещение плёсов и перекатов, перемещение излучин,
прорыв петель, отторжение побочней, развитие спрямляющих проток и рукавов) в
период рекогносцировочного обследования следует проводить опрос местных
жителей, а также речников, рыбаков, перевозчиков паромов и др. Полученные
сведения необходимо оформлять в виде актов опроса. 4.6. На основании
материалов, использованных на первом этапе выбора вариантов расположения
подводного перехода, и результатов рекогносцировочного обследования
организация, проектирующая переход, составляет и представляет комиссии краткую
записку с оценкой типа руслового процесса и обоснованием предлагаемых
вариантов. 4.7. Комиссия на местности
определяет местоположение основного варианта перехода. Участки перехода следует
выбирать в соответствии с требованиями п. 4.1 и с учетом типов руслового
процесса: - на участках русел с
ленточногрядовым и побочневым типами - на плёсовых участках, в нижней части
побочней и плёсов; - при ограниченном и
свободном меандрировании (для пологих излучин) - на плёсовых участках ниже
вершины излучины; - при свободном
меандрировании (для хорошо развитых излучин с углом разворота более 120°) -
вблизи точек перегиба ниже или выше (между плёсом и перекатом); - при незавершенном
меандрировании с развивающимся спрямляющим протоком - на отмирающей излучине
без пересечения спрямляющего протока; - при осередковом типе - в
местах наиболее глубоких плёсов, низовых участков сползающих островов. 4.8. Не следует располагать
переходы в местах возможного образования заторов и зажоров льда, интенсивного
разрушения берегов в результате склоновой эрозии, развития оползневых и
карстовых явлений. 4.9. Местоположение створов
перехода на участке реки, выбранном комиссией, устанавливают после выполнения
русловой съемки. Объемы разработки подводных траншей в намеченных створах
должны быть минимальными в границах участка русловой съемки. Для выполнения
указанного требования в случаях ограниченного меандрирования, побочневого и
осередкового типов руслового процесса следует построить совмещенные поперечные
профили и предварительный поперечный профиль возможного размыва русла. Из
совмещенных профилей необходимо выбрать профили по трем-четырем поперечникам,
очертания которых наиболее близки к очертаниям прогнозируемого профиля.
Оптимальный створ определяют следующим расчетом (рекомендуемое приложение 3). Для каждого из профилей
находят превышение отметок дна над соответствующими отметками прогнозируемого
профиля размыва Δzi; в нескольких (5-10)
равноотстоящих друг от друга точках и вычисляют значение Δω м2,
характеризующее суммарную площадь поперечных сечений траншеи в указанных,
точках: (1) где b0 - предварительное значение
ширины траншеи по дну, принимаемое на данной стадии проектирования в
зависимости от ширины меженного русла В согласно табл. 2, м; mОТ - коэффициент заложения откосов подводной траншеи, предварительно
определяемый по данным рекогносцировочного геологического обследования участка
перехода; DТ - наружный диаметр трубопровода, указываемый в задании
на изыскания, м; п - число точек, для которых определяют превышения
Δzi. Для выбранного створа
величина Δω должна иметь минимальное значение. Таблица 2 В, м..................................................... 50 100 200 400 800 1600 b0, м.................................................... 3,6 3,8 4,1 5,1 6,8 10,3 4.10. При окончательном
выборе створов следует учитывать данные инженерно-геологического бурения в
выбранных створах. Следует по возможности избегать расположения траншеи в зоне
выхода в русло скальных грунтов. В противном случае необходимо заглубите трубу
в скалу на глубину hт=Dт+0,5. 5. PAСЧЕТЫ ХАРАКТЕРИСТИК РУСЛОВЫХ ФОРМ НА ПЕРЕХОДАХРасчет характеристик русловых микроформ5.1. Для определения
знакопеременных деформаций дна и расхода донных наносов необходимо определить
геометрические размеры и динамические показатели русловых микроформ (гряд), к
которым относятся малоинерционные, волнообразные донные структуры массового
распространения в русле, соизмеримые с глубиной потока, образующиеся при
скоростях потока, превышающих неразмывающие (рекомендуемое приложение 4). 5.2. Длина гряд lг м при установившемся режиме движения воды определяется по зависимости где С - коэффициент Шези на расчетной
вертикали при среднем значении уклона потока по ширине реки, м0,5/с;
Н- глубина потока на вертикали, м; g=9,81 м/с2 -
ускорение свободного падения. 5.3. Высоту гряд hг м следует определять по зависимостям: hг=0,25Н при Н < 1 м; (3); hг=0,2+0,1Н при Н
> 1 м. (4) 5.4. Скорость смещения гряд Сг
м/с определяется по формуле Cг=0,019υFr3 (5) или в м/сут по
номограммам рекомендуемого приложения 5. В формуле (5) υ - средняя скорость
потока над местом определения гряды, м/с; Fr= - число Фруда. 5.5. Период движения гряд
установившегося профиля в сутках определяется по формуле τг=lг/Сг, (6) где lг рассчитывается по зависимости (2),
м; Сг - по номограммам рекомендуемого приложения 5,
м/сут. Прогнозирование скорости перемещения затопляемых мезоформ речного русла или их фрагментов5.6. Для определения
суммарного значения смещения затопляемых мезоформ речного русла (побочни,
осередки, косы) или их фрагментов, пересекающих створ перехода за период
эксплуатации трубопровода, необходимо выполнить расчет скорости их перемещения. 5.7. Для производства
расчетов необходимо наличие следующих исходных материалов: - данных о суточных уровнях
воды в створе перехода или приведенных к этому створу (за все годы наблюдений); - топографической карты или
плана русловой съемки участка, охватывающего две смежные русловые мезоформы; - графиков связи средних
скоростей и глубин потока для характерных вертикалей над мезоформой в створе
перехода, полученных непосредственными измерениями скоростей потока или
расчетным путем; - данных о крупности и
составе донных наносов. СΔ=950υг(hг/Δ)Fr3, (7) где СΔ - скорость перемещения
мезоформ (в общем случае при расчетах может быть принято несколько расчетных
вертикалей по ширине русла и соответственно получено неравномерное смещение
мезоформы по ее фронту движения), м/сут; υг - средняя скорость потока над гребнем
микроформы, м/с; hг/Δ - относительная высота микроформ; hг - высота микроформ, определяемая по формулам (3) и (4), м;
Δ - высота мезоформы, определяемая по топографической карте или русловой
съемке как разность между отметками гребня и подвалья мезоформ, м; Fr= - значение числа Фруда над гребнем микроформ. 5.9.
Расстояние LΔ м, пройденное мезоформой вдоль расчетного продольника за прогнозируемый
период времени Тпр, следует вычислять по зависимости где δТi - интервалы времени,
отвечающие различным характерным диапазонам наполнения русла или стадиям
затопления мезоформ, сут; СΔi
- скорость перемещения мезоформы, определяемая по формуле (7) или в зависимости от
hг/Δ по номограммам рекомендуемого приложения 6,
м/сут. 5.10. Расчет LΔ производится в следующем
порядке. Для заданной крупности
донных наносов, используя таблицы рекомендуемого приложения 4, график υ=f(H) и русловую съемку,
определяется критическая глубина Hк и соответствующее ей
значение уровня воды, при котором υ>υ0, т.е. начинается движение донных наносов. На основании данных
наблюдений за все предыдущие годы составляется таблица либо строится
эмпирическая кривая обеспеченности суточных уровней воды для значений Н³Нк. Эти данные группируются в
частные интервалы с равными или неравными градациями. Определяется частота
повторяемости уровня воды в каждом интервале за период наблюдений: =mi/N, (9) где mi - количество суток
повторяемости уровня в данном интервале; N - общее количество суток за
период наблюдений, N=365n,
где n - число лет наблюдений. Частные интервалы времени δТi
отвечающие тем же стадиям наполнения русла за прогнозируемый период,
определяются по зависимости δТi=Nпр (10) где Nпр - общее количество суток
прогнозируемого периода. Пример расчета LΔ по формуле (8) приведен в
рекомендуемом приложении 7. 6. ПРОГНОЗИРОВАНИЕ ПЛАНОВЫХ ДЕФОРМАЦИЙ РУСЛА6.1. Прогноз плановых
деформаций русла на заданный срок составляется на основании экстраполяции
значений смещения берегов русла, определяемых совмещением планов русла,
выполненных с интервалом не менее 5-7 лет (достоверность прогноза существенно
возрастает при наличии трех разновременных съемок, в том числе одной на момент
проектирования перехода). 6.2. Совмещение планов
выполняется по координатной сетке или по не изменяющим своего положения деталям
местности. - зонам размыва должна
соответствовать четко выраженная бровка берега, крутой береговой откос,
лишенный растительности со следами недавних обрушений; - зонам намыва должны
соответствовать сглаженные бровки берега, пологое очертание берегового откоса: - должны быть опознаны на каждом
из совмещенных планов наиболее характерные морфологические элементы, такие, как
вершины и точки перегиба линий бровок вогнутого и выпуклого берегов, гребни и
подвалья мезоформ и т.п. Экстраполируя смещение
характерных точек русла по направлению и по числовому значению, получают
положение русла на прогнозируемый срок. При этом необходимо принимать во
внимание обстоятельства, способные изменить характер русловых деформаций, в
частности приближение излучины к коренному склону долины или останцу, образование
спрямляющих протоков на смежных излучинах и др. 6.4. Оправдываемость
прогноза следует считать тем выше, чем надежней исходные планы и их совмещение,
подробнее освещен русловыми съемками предыдущий ход развития излучины, меньше
вариация интенсивности планового перемещения излучины за период совмещения
съемок и прогнозируемый период, продолжительней по сравнению с периодом
колебаний водности срок прогноза и промежутки времени между следующими друг за
другом исходными русловыми съемками. 6.5. При отсутствии съемок
предшествующих положений данного участка (излучины), но наличии подобных
материалов по одной или нескольким излучинам рассматриваемого морфологически
однородного участка прогноз плановых деформаций составляется следующим образом. Границы зон плановых
деформаций устанавливают при морфологическом обследовании участка перехода по
указанным в п.
6.3 признакам и на основании русловой съемки по смещению линии
наибольших глубин относительно геометрической средней линии русла (в любом
створе, нормальном к осевой линии русла, берега перемещаются от средней линии в сторону линии
наибольших глубин). Смещение Lб береговой линии в произвольном створе данной излучины вычисляется по формуле Lб=kСмаксТпр(Нмакс-H)/(Нпл-H), (11) где Нмакс - наибольшая глубина в расчетном поперечнике;
Нпл - наибольшая глубина в пределах
всей излучины; Н - средняя глубина двух смежных перекатов (глубины должны быть
приведены к одному уровню); Тпр, - период прогноза (проектный срок эксплуатации сооружения); k
- коэффициент
скорости развития излучины, зависящий
от степени ее развитости, выражаемой значением угла разворота a0; k
определяется по табл.
3. Таблица 3 a0°..................................... 10 20 30 40 55 70 85 100 125 170 215 240................................................. 260 k......................................... 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 0,9 0,8 0,7 Входящая в формулу (11)
максимально возможная для рассматриваемого морфологически однородного участка
скорость плановых деформаций Смакс вычисляется по формуле Смакс= (12) где Смакс - наибольшая скорость смещения берегов в
пределах каждой излучины, для которой имеются данные совмещения русловых
съемок(средняя по периметру вогнутого берега скорость размыва берега каждой излучины
составляет 0,66 наибольшей на данной излучине); ki - табличные значения
коэффициента скорости развития соответствующей излучины; nи
- число излучин, по которым имеются данные совмещений. 6.6. При полном отсутствии
данных по смещению берегов в пределах рассматриваемого участка следует
использовать материал по другой реке, которую можно рассматривать в качестве
аналога. В качестве аналога можно рекомендовать реку с тем же типом руслового
процесса, а для определения скоростей деформации использовать их связь с
определяющими факторами при данном типе руслового процесса. Для получения таких
связей могут быть использованы данные, приводимые в рекомендуемом приложении 8. 6.7. На вогнутых берегах
излучин меандрирующих рек, как правило, не следует предусматривать капитального
берегоукрепления с целью предотвращения (или замедления темпов) естественных
плановых деформаций русла. 7. УЧЕТ ДЕФОРМАЦИЙ РЕЧНЫХ РУСЕЛ В СПЕЦИФИЧЕСКИХ УСЛОВИЯХСеверные реки7.1. Прогнозирование
русловых деформаций на северных реках, протекающих на участках распространения
вечномерзлых и многолетнемерзлых грунтов, следует выполнять на основании общей
типизации русловых процессов с учетом границ распространения и глубин залегания
мерзлых грунтов как в русле, так и на пойме, а также типов мерзлотных процессов
и ледовых условий на участке перехода. Расчеты характеристик русловых
деформаций для участков рек с сезонным промерзанием и оттаиванием грунтов, а
также расчеты заносимости подводных траншей следует выполнять в соответствии с
требованиями разделов
5, 6,
10
настоящих Норм. 7.2. Створ перехода
трубопроводов следует располагать на участках рек, берега и поймы которых
сложены крупнообломочными, гравийно-галечными или песчаными грунтами с глубоким
залеганием грунтовых вод, на участках с отсутствием или слабым развитием
мерзлотных процессов. Следует по возможности
избегать участков с интенсивным проявлением мерзлотных физико-геологических
процессов: термокарстовых и солифлюкционных явлений, участков пучения грунтов,
образования наледей и ледяных бугров, берегов, сложенных сыпучемерзлыми
песчаными грунтами и подверженных морозному выветриванию. Особое внимание следует
уделять выявлению в берегах и на пойме линз подземного льда, а также наличию
многолетнемерзлых грунтов на пересекаемых трассой трубопровода островах и
побочнях как участков, исключительно неблагоприятных для строительства
переходов. При выборе створов перехода
- выше мест образования заторов следует учитывать возможность выхода льда на
пойму и ее размыв. При расположении переходов ниже мест образования заторов
следует учитывать возможность увеличения темпов развития плановых и глубинных
деформаций после прорыва заторов. - распространение и
залегание мерзлых грунтов на береговых участках и поймах; - толщина оттаивающих и
промерзающих грунтов; - мерзлотные процессы:
пучение, наледи, термокарст, солифлюкция, трещинообразование; - ледовый режим. Основные объемы
дополнительных работ выполняют при геологических изысканиях. 7.4. Для определения границ
залегания мерзлых грунтов следует выполнить рекогносцировочное обследование
поймы в полосе перехода шириной 0,5-4,0 км. На основании рекогносцировочного
обследования должен быть уточнен участок перехода и проведено детальное его
обследование в полосе шириной 300-500 м. На этом участке необходимо выполнить
схематическое мерзлотное картирование глубины залегания мерзлых грунтов с
помощью ручного бурения либо шурфования. 7.5. Для оценки плановых
деформаций русла, зависящих от характера и состояния грунтов, вдоль уреза воды
или вдоль бровки руслового берега следует составлять продольные
мерзлотно-геологические профили. Длина профиля принимается равной длине
участка, для которого выполняется русловая съемка. Линии скважин и шурфов
следует располагать у бровок пойм (на обоих берегах), на островах и побочнях.
Одновременно шурфованием или бурением следует определить положение грунтовых
вод. Бурение и шурфование следует вести в осенний период. 7.6. При оценке деформаций
берегов, сложенных глинистыми грунтами, следует выявить участки крутых склонов,
подверженные оползневым явлениям (солифлюкции), а также места пучения. Физико-механические свойства
грунтов как в мерзлом, так и в оттаявшем состоянии следует определять
общеизвестными методами. Образцы из шурфов и скважин необходимо брать
ненарушенной структуры. 7.7. Для количественной
оценки деформаций пойм следует выполнить обследование участка перехода в
осенний период перед ледоходом и в весенний период вскоре после освобождения
пойм от затопления. В промежутке между указанными периодами необходимо вести
наблюдения за глубиной сезонного промерзания. Для оценки развития
пойменных протоков необходимо получить сведения за период ледохода (данные о
глубине и продолжительности затопления поймы). 7.8. Для учета влияния
ледовых условий на деформации берегов и русла необходимо выполнить специальные
изыскания на участке перехода протяженностью не менее 20 ширин русла. При этих
изысканиях на плановую основу, используемую для гидроморфологического
обследования участка перехода, должны быть нанесены наиболее вероятные места
образования заторов льда, сужения русла, резкие повороты, перекаты, приверхи
островов. Необходимо также в предледоставный период и перед вскрытием реки
провести визуальное обследование побочней, осередков, поверхности приурезовой
полосы пойменной террасы (шириной не менее половины ширины меженного русла),
фиксируя места образования морозобойных трещин, характер почвогрунтов, следы и
характер разрушения берегов и поймы ледоходом. 7.9. В зимний период, предшествующий
вскрытию реки, необходимо выполнить маршрутное обследование участка с
фотографированием и фиксацией на схеме всех ледовых образований (заторов,
навалов льда, наледей, торосов). 7.10. Прогноз русловых
деформаций составляют с учетом анализа всех факторов, перечисленных в п. 7.3,
на основании совмещения русловых съемок или картографических и
аэрофотосъемочных материалов за ряд лет наблюдений. Горные реки7.11. На участках русел
горно-предгорных рек с ленточногрядовым, побочневым и осередковым типами
руслового процесса подводные переходы трубопроводов во всех случаях следует
проектировать по схеме, указанной на рис. 1, с постоянным по ширине
реки заглублением, превышающим максимальную глубину руслa на
данном участке. Рис. 1. Прогнозируемый
поперечный профиль (6) размыва русла на участках рек горно-предгорной зоны с
ленточногрядовым, побочневым и осередковым типами руслового процесса. 1-5
- совмещенные поперечные профили русла. 7.12. На горно-предгорных
реках с горной пойменной многорукавностью (пойменным блужданием) и долинным
блужданием (рис.
21 рекомендуемого приложения 1) подводные переходы трубопроводов
следует проектировать по схеме, указанной на рис. 2, с одинаковым
заглублением трубопровода по ширине всей зоны блуждания русла (поймы, долины). 7.13. Критические скорости
сдвига частиц наносов (неразмывающие скорости) на реках с крупным аллювием
следует определять по таблице рекомендуемого приложения 4. 7.14. Скорость движения
удельного фрагмента (части русла шириной 1 м) микроформ, сложенных из крупных
наносов при υ>υ0 и относительной гладкости
потока (отношения глубины потока к средней крупности донных отложений) H/d
> 15, следует определять по зависимости (5) или номограммам рекомендуемого приложения 5.
Неразмывающая скорость υ0 определяется по таблицам рекомендуемого приложения 4. 7.15. Скорость движения
удельного фрагмента мезоформ речного русла (ленточные гряды, побочни,
осередки), сложенных из крупных частиц при H/d < 15 определяется по зависимости (5)
или номограммам рекомендуемого приложения 5. 7.16. Скорость движения
удельного фрагмента мезоформ, сложенных из крупных частиц при H/d
> 15, определяется по зависимости (7) или номограммам рекомендуемого приложения 6. 7.17. Удельный объемный
расход донных наносов (м3/сут·м)) перемещающихся в форме гряд из
крупных наносов при υ>υ0 и H/d
> 15, определяется по зависимости (13) Рис. 2. Прогнозируемый
поперечный профиль (6) размыва русла на участках рек горно-предгорной зоны. а - горная пойменная
многорукавность (пойменное блуждание), б - долинное блуждание; 1-5 -
совмещенные поперечные профили русла. Местоположение створов показано на рис. 21. 7.18. Удельный расход донных
наносов (кг/(c·м)) при бесструктурной (безгрядовой) форме
перемещения крупных частиц (H/d<15)
для уклонов дна I£0,01 следует определять по формуле qт=[k(gнu)]/(u/u0н)3 (u-u0н) (d/H)1/m, (14) где u0н - скорость потока, при которой прекращается
движение донных наносов (u0н=0,7u0н); k - коэффициент, учитывающий
форму частиц: для хорошо окатанных наносов округлой формы k=0,0018, для пластинчатой k=0,0012;
gн=2650 кг/м3; m=1,5+0,314
С/, где С - коэффициент Шези на расчетной вертикали. 7.19. При уклонах дна горных
рек I£0,01 и расходах воды редкой повторяемости
(менее 10 % обеспеченности максимальных расходов) для определения суммарного
расхода наносов следует пользоваться формулой Qт=7000Q(H/d)0,7I2,2, (15) где Q выражаются в м3/с,
а Qт - в кг/с. 8. ОЦЕНКА ТОЧНОСТИ ПРОГНОЗА ДЕФОРМАЦИЙ РУСЛА ПО МАТЕРИАЛАМ ИЗЫСКАНИЯ И ЕГО УЧЕТ ПРИ ПРОЕКТИРОВАНИИ ПЕРЕХОДА8.1.
При определении количественных показателей плановых деформаций русла на
основании сопоставления карт и топографических материалов следует учитывать
случайные погрешности, обусловленные погрешностями самих плановых съемок dс, погрешностями приведения
сравниваемых съемок к одному масштабу dпр, погрешностями совмещения
съемок dсовм и погрешностями измерения
смешения линии берега на совмещенных планах dсизм. Общую среднюю погрешность dу определяют из выражения dу= (16) где М - масштабный коэффициент совмещаемых
планов. 8.2. Среднюю погрешность
плановых съемок следует принимать 0,5 мм в масштабе плана. 8.3. Среднюю погрешность
приведения съемок к общему масштабу (в миллиметрах приведенного масштаба)
следует принимать равной dпр=0,5, (17) где nM - отношение большего
масштабного коэффициента к меньшему; 0,5 мм - средняя погрешность характерного
линейного размера, по которому съемки приводят к общему масштабу. Совмещенные
съемки следует приводить к более крупному масштабу. 8.4. Среднюю погрешность
совмещения плановых съемок dсовм при наличии на них общих,
неизменных во времени ориентиров (геодезические знаки, отдельные строения,
перекрестки автомобильных и шоссейных дорог, мосты, линии и опоры ЛЭП и др.)
принимают равной 1 мм в масштабе плана. При отсутствии четко фиксируемых
постоянных ориентиров погрешность dсовм определяют опытным путем на
основании сопоставления нескольких равноценных вариантов совмещения съемок по
условным ориентирам. В качестве таких ориентиров принимают мало изменяющиеся во
времени элементы берегового рельефа (овраги, балки, старицы, озера, бровки
склонов долины и др.), предварительно обозначив на них осевые линии и
характерные точки. 8.5. Среднюю погрешность
измерения смещения линии берега на совмещенных планах принимают 0,5 мм (в масштабе
плана). 8.6. При совмещении плановых
съемок по постоянным (неизменным во времени) ориентирам среднюю абсолютную
погрешность в метрах определяют из выражений: dу= при nM>1; (18) dу=0,0014M при nM>1, (19) где М - масштабный коэффициент совмещаемых
планов. Значения dу, округленные до 1 м,
приведены в табл.
4, а пример расчета погрешности - в рекомендуемом приложении 9. Таблица 4 Значения 6 dу при совмещении съемок разных
масштабов, м
8.7. Совмещение плановых
материалов допускается при интервале времени t между съемками не менее 5-7
лет. Полученное значение размыва берега Lб за период времени t
должно превосходить двойную погрешность, рассчитанную по формулам (16),
(18)
и (19). 8.8.
Если значение смещения берега на совмещенных съемках не превосходит двойную
погрешность ее определения (Lб£2dу), то в качестве расчетного
значения смещения для определения плановых деформаций следует принимать L1=Lб+2dу (20) 8.9. В случае когда размыв
берега за период между съемками предполагается заведомо малым (до 1,5 м/год) и
может быть предварительно оценен на основании имеющихся данных об интенсивности
плановых деформаций и аналогичных гидроморфологических условиях, следует
выполнить съемку бровки берега в возможно более крупном масштабе с нанесением
береговых ориентиров, используемых для совмещения съемок. 8.10. В случаях,
предусмотренных п.
8.8, на стадии технического проекта следует выполнить расчет
дополнительного объема разработки подводной траншеи DWп м3 (рис. 3),
обусловленного запасом DL=2dуТпр/t (Тпр
- нормативный срок эксплуатации перехода) на возможную неточность прогноза плановых деформаций: DWп=mотmб(Нмакс+hт)3 (y0-j), (21) где mот - коэффициент заложения
откоса подводной траншеи на приурезовом участке; mб - коэффициент заложения
характерного участка подводного берегового склона; Нмакс - наибольшая глубина русла
(от среднего меженного уровня) в створе перехода, м; глубина траншеи на
вертикали, соответствующей наибольшей глубине русла, м; y0 - безразмерная величина,
определяемая по графику (рис. 4) в зависимости от параметров p0=DL/[mб(Нмакс+hт)] и b0/[mот (Нмакс+hт)], где b0 - ширина траншеи по дну,
определяемая но табл.
2; j - безразмерная величина,
принимаемая равной нулю при Lб³mб(Нмакс+hт) и определяемая по графику (рис. 5) в
зависимости от параметров p0=DL/[mб(Нмакс+hт)] и x=DL/Lб при Lб<mб(Нмакс+hт). Рис. 3. Расчетная схема для
определения дополнительных объемов разработки подводных траншей с учетом точности
прогноза плановых деформаций русла. а - профиль прибрежного
участка русла по створу перехода, б - поперечный профиль траншеи в
прибрежной части русла (разрез по 1-1); 1 - линия проектного дна реки; 2
- линия прогнозируемого размыва русла; 3 - линия характерного
участка подводного прибрежного склона; 4 - дно траншеи. Рис. 4. Номограмма y0=f(p0, b0/[mот (Нмакс+hт)]). Рис. 5. Номограмма y0=f(p0, x). 8.11.
Глубину траншеи hт для определения параметров, необходимых при расчете по формуле (21), находят из выражения hт=zпр+0,5+Dт, (22) где Dт - диаметр трубопровода; zпр - значение прогнозируемого
размыва дна на вертикали с максимальной глубиной русла. 8.12. Если дополнительные
объемы разработки подводной траншеи DWп превышают 10 % общего объема
разработки, то на стадии составления рабочих чертежей необходимо уточнить
прогноз на основании дополнительных материалов, обеспечивающих снижение
значении запаса DL. С этой целью следует привлечь съемки за более продолжительный период
времени и выполнить повторную русловую съемку в более крупном масштабе. 8.13.
При определении значении глубинных деформаций на основании совмещения
поперечных профилей русла следует учитывать случайные погрешности,
обусловленные: погрешностью измерения глубин при русловой съемке dг, погрешностью определения
глубины на плане русловой съемки dп, погрешностью совмещения
поперечных профилей dсовм (см. рекомендуемое приложение 9). Общую среднюю погрешность
определения глубинных деформаций находят из выражения dz=. (23) Средняя погрешность измерения
глубины dг при эхолотировании
принимается равной 0,3 м. Средняя погрешность определения глубины на плане
русловой съемки dп принимается равной 0,5D0,
где D0 - шаг изобат, м. Средняя
погрешность совмещения поперечников dсовм в метрах принимается равной
0,5 Mв/1000, где Mв - вертикальный масштаб
поперечного профиля. Если погрешность dz
больше половины прогнозируемого значения размыва zпр, ее следует принимать равной
zпр+2dz одновременно следует оценить
дополнительный
объем разработки грунта, обусловленный введением запаса Dz=2dz. 8.14. Дополнительный объем
разработки подводной траншеи DWг м3 вследствие
возможной погрешности прогноза глубинных деформаций (в сторону их завышения)
следует определять по формуле DWг=Dwсрl0, (24) Рис. 6. Номограмма для
определения относительного увеличения площади поперечного сечения подводной
траншеи Dw/w
в зависимости от параметра b0/(mотhт). где Dw
- среднее увеличение площади поперечного сечения траншеи при увеличении ее
глубины на dz,
м2; l0 - длина участков траншеи между наинизшими отметками
подводных береговых склонов русла. 8.15. Относительное
увеличение площади поперечного сечения подводной траншеи Dw/w
следует определять по номограмме (рис. 6) в зависимости от погрешности прогноза
глубинных деформаций Dz,
средней глубины траншеи hт на участке длиной l0, и параметра b0/(mотhт), где mот - коэффициент заложения
откоса траншеи. Для оценки величины DWг на стадии изыскании значения
параметров hт и b0/(mотhт) следует принимать по табл. 5 в
зависимости от ширины меженного русла В. Таблица 5 Значения параметров hт и b0/(mотhт) в зависимости от ширины
меженного русла
8.16. При выполнении
инженерных изысканий следует учитывать, что для переходов при ширине русла в
межень до 400 м, точность прогноза плановых деформаций влияет существенно
больше нa объемы подводных земляных работ, чем точность
прогноза глубинных деформаций. Для переходов при ширине русла в межень более
400 м точность прогноза глубинных деформаций играет определяющую роль в
определении объемов разработки траншеи только при сравнительно низких темпах
размыва берегов: до 0,6 м/год для рек шириной 400 м и до 1,5 м/год для рек
шириной до 1600 м. 9. ПОСТРОЕНИЕ ЛИНИИ ВОЗМОЖНОГО РАЗМЫВА РУСЛА9.1. Построение на профиле
перехода линии возможного размыва русла за период эксплуатации трубопровода
следует выполнять с учетом типа руслового процесса на основании материалов
топографических, гидрологических и инженерно-геологических изыскании,
производства расчетов и прогнозов плановых и высотных деформаций дна и оценки
их ориентировочной точности, а также на основании учета конструктивных решений
перехода. 9.2. При ленточногрядовом и
побочневом типах руслового процесса прогнозируемый профиль возможного размыва
строят с учетом только высотных деформаций дна. При остальных типах руслового
процесса наряду с глубинными деформациями следует учитывать плановые смещения
берегов русла. - на основании совмещения
планов разных лет съемки, поперечных профилей или расчетным путем определяют
вероятность и темпы смещения русловых мезоформ, плёсовых лощин, перекатов и
длину участка совмещения Lсовм; - совмещают на одном чертеже
поперечные профили русла для участка выше створа перехода (за исключением
участков меандрирующих рек с развитыми излучинами); - по наинизшим отметкам
совмещенных профилей проводят огибающую линию глубинных деформаций (размывов),
обусловленных предполагаемым смещением плёсовых лощин с вышерасположенного
участка реки в створ перехода за многолетний период; - на основании материалов
годичного цикла изысканий или расчетным путем определяют значение сезонных
деформаций; - строят прогнозируемый
профиль суммарных (многолетних и сезонных) размывов дна. 9.4. Для рек шириной менее
50 м с сокращенным объемом изысканий совмещения поперечных профилей русла и
построения огибающей линии глубинных деформаций не требуется. Вместо этого
определяют наибольшую глубину по продольному профилю русла в пределах данной
макроформы. Плановые деформации определяются совмещением планов разных лет
съемки, в соответствии с п. 9.3. 9.5. При ленточногрядовом и
побочневом типах руслового процесса поперечники следует совмещать по осевой
(средней геометрической) линии русла. При ограниченном
меандрировании поперечники, включающие русло и пойму, следует совмещать по
средней линии пояса меандрирования. Рис. 7. Участок русла с
побочневым типом руслового процесса. Створ перехода совпадает с
поперечником 15. Lсовм=kзСпрТпр, (25) где Спр - средняя прогнозируемая
скорость смещения характерных точек русловых мезоформ или других фрагментов
руслового рельефа (гребень переката, подвалье плёса и т.д.), определяемая на
основании совмещения разновременных русловых съемок по формуле (7) или по реке-аналогу,
м/год; Тпр - расчетный срок прогнозирования,
включающий время проектирования и строительства, год; kз - коэффициент
запаса, зависящий от достоверности определения Спр,
принимаемый для интервала совмещения более 10 лет равным 1,2, а для интервала
менее 10 лет, а также для значений Спр, полученных расчетом
или по объекту-аналогу, равным 2. 9.7. Прогнозируемый
поперечный профиль размыва русла при побочневом, осередковом и ленточногрядовом
типах руслового процесса необходимо строить с учетом скорости смещения мезоформ
и длины участка совмещения, определяемой по формуле (25) и по схемам,
представленным на рис. 7, 8. Рис. 8. Прогнозируемые
поперечные профили размыва русла. 1 - между поперечниками 8-15 аа1а2а3b1b2b3b4a6; 2 - между
поперечниками 12-15 аа1а2а3b1c1c2a6; 3 - между
поперечниками 14-15 аа1а2а3a4a5a6. Местоположение поперечников
показано на рис.
7. Рис. 9. Схема построения
прогнозируемого профиля размыва русла для свободномеандрирующих рек. а - при трассировке
трубопровода с кривой искусственного гнутья, б - при трассировке
трубопровода по радиусу упругого изгиба; 1 - линия естественного дна, 2
- линия прогнозируемого размыва русла, 3 - дно траншеи, 4 -
вспомогательные кривые построения прогнозируемого профиля размыва. 9.8.
Для свободномеандрирующих рек профиль возможного размыва русла строится в
следующем порядке (рис. 9): - на поперечном профиле
русла в створе перехода проводят линию, параллельную существующей линии берега
и подводного берегового склона, смещенную относительно нее в направлении
размыва на расчетную величину ; - на уровне, соответствующем
наинизшей отметке прогнозируемого глубинного размыва, проводят горизонтальную
линию. Сопряжение прогнозируемых
линий глубинного и берегового размывов выполняют с учетом трассировки
трубопровода. При трассировке трубопровода по радиусу искусственного гнутья линии продолжают до их взаимного
пересечения (рис.
9 а), При трассировке трубопровода по радиусу естественного
упругого изгиба (рис. 9 б) линию размыва (отступления
берега) 2 продолжают до пересечения с горизонтальной линией 4,
проведенной на уровне наинизшей отметки существующего дна (точка А). Линию
глубинного размыва 1 продолжают до вертикали, проведенной через точку В
до пересечения характерной линии существующего берегового склона с
горизонтальной линией на уровне наинизшей отметки существующего дна (точка С).
Крайние точки С и А линии глубинного размыва и отступления берега соединяют
прямой линией. 9.9. При сокращенном объеме
изысканий для рек ленточногрядового и побочневого типов, а также для
ограниченного меандрирования профиль возможного размыва строят в порядке,
аналогичном указанному в п. 9.8. 9.10. Отступление бровок
обоих берегов при ленточногрядовом и побочневом типах руслового процесса
принимается равным Lб=(Вмакс-Bств)/2, (26) где Вмакс - максимальная ширина русла
между бровками берегов на участке длиной Lсовм, определяемом в
соответствии с п.
9.6; Bств - ширина русла между бровками берегов в проектном
створе; Lб принимается равным не менее 20 м. 9.11. Отступление бровки
размываемого берега за прогнозируемый период при ограниченном и свободном
меандрировании (для излучин с углом разворота менее 50°) следует определять
графическим или аналитическим способом. При графическом способе (рис. 10)
совмещают по общим ориентирам разновременные съемки излучины, измеряют смещение
излучины Lи за период между съемками t,
далее смещают план участка более поздней съемки относительно первоначального
положения излучины на величину Lи.р=LиТпр/t, где Тпр
- продолжительность прогнозируемого периода. При аналитическом способе следует
использовать данные о скорости сползания излучины Си по
участку (или реке)-аналогу. Смещение излучины за прогнозируемый период Тпр
следует рассчитывать по формуле Lи.р=aСиТпр, где a - коэффициент запаса,
равный 1,5, если аналогом является участок данной реки, и равный 2,0, если
аналогом является участок другой реки. Рис. 10. Схема смещения
излучины при ограниченном меандрировании. 1 - положение излучины в
начальный момент; 2 - положение излучины на конец прогнозируемого
периода; 3 - ось симметрии излучины в первоначальном положении; 4
- проектный створ; Вм - ширина пояса меандрирования. Смещение бровки берега в
створе перехода Lб за прогнозируемый период Тпр
определяют в соответствии со схемой рис. 10 с помощью графиков рис. 11,
12,
в зависимости от параметров Lи.р/lи, x/lи, где Lи.р - расчетное смещение
излучины, lи - шаг излучины
(расстояние между точками перегиба средней линии русла), x -
расстояние от вершины излучины до створа перехода. Для определения величины Lб необходимо значения Lб/B, полученные по графикам рис. 11,
12,
умножить на ширину пояса меандрирования Вм - расстояние по
перпендикуляру между касательными к вершинам смежных излучин. При расположении створа
перехода ниже по течению от вершины излучины на расстоянии, меньшем половины
расчетного смещения излучины Lи.р, следует учитывать размыв
обоих берегов, а при большем расстоянии - только размыв вогнутого берега. Рис. 11. Графики
относительного размыва выпуклого берега в зависимости от расстояния проектного
створа до вершины излучины при различных смешениях излучины. 9.12. При русловой и
пойменной многорукавности с устойчивыми островами профиль возможного размыва
строят отдельно для каждого разветвления русла по схеме, близкой к побочневому
типу или меандрированию в соответствии с характером развития рукава. Рис. 12. Графики относительного
размыва вогнутого берега реки. a
- Lи.р/2<x<Lи.р; б - Lи.р<х. 9.13. Дополнительные
деформации дна, обусловленные переформированием русловых микроформ (гряд),
определяют из выражения Dг=0,1kг(H5%-H), (27) где kг - коэффициент, учитывающий
возможныt, отклонения фактической высоты гряд от расчетных
значений, принимаемый равным 1,3; Н5% - глубина на расчетной
вертикали при уровне воды 5 %-ной обеспеченности; Н - глубина на этой же
вертикали на момент русловой съемки. 9.14. Полученный
прогнозируемый профиль возможного размыва русла на участке перехода совмещают с
поперечным профилем русла в проектном створе, на который наносят границы
залегания трудноразмываемых грунтов (базальтового слоя), если они обнаружены
при инженерно-геологических изысканиях. Окончательный профиль
возможного размыва дна в створе перехода с выходами трудноразмываемых грунтов
(базальтового) выше прогнозируемого профиля многолетних и сезонных деформаций
дна, следует проводить по границе трудноразмываемых пород. 10 УЧЕТ ЗАНОСИМОСТИ ПОДВОДНЫХ ТРАНШЕЙ НА ПЕРЕХОДАХ ТРУБОПРОВОДОВПроектно-технологические задачи10.1. Отложение донных
наносов в траншее при скоростях течения потока, превышающих неразмывающие,
необходимо учитывать для решения следующих задач: - определение проектной
ширины траншеи по дну с учетом расчетного запаса на заносимость; - определение объема
наносов, поступающих в траншею за время ее разработки; - определение минимальной
производительности земснаряда из условий заносимости траншей; - определение возможности
укладки трубопровода способом протаскивания в условиях интенсивной заносимости
подводной траншеи. Расчетные методы определения заносимости траншей10.2. Для
расчетов заносимости подводной траншеи необходимо располагать следующими
исходными данными: -
поперечными профилями дна реки и траншеи в створе перехода; - данными о
гранулометрическом составе проб донных наносов; -
результатами измерения (или расчета) средних на вертикали скоростей течения
потока в створе перехода при расчетном уровне воды. Измерения скоростей на вертикалях
в период полевых изысканий следует выполнять при уровнях воды, близких к
среднему рабочему уровню. Скоростные вертикали
необходимо располагать вблизи створа перехода. Количество скоростных
вертикалей определяется особенностями морфологического строения русла (формой
поперечного сечения) и в зависимости от ширины реки составляет 2-5. Вместо точечных измерений
скорости потока на вертикалях допускается измерение ноля поверхностных
скоростей поплавками с последующим пересчетом данных измерений на средние по
вертикали скорости. Пробы донных наносов следует
брать одновременно с измерениями скорости течения на тех же промерных
вертикалях. 10.3. В тех случаях, когда
подводные земляные работы выполняют при уровнях воды и скоростях течения,
существенно отличающихся от указанных в проекте, следует выполнить повторные
расчеты заносимости траншей на стадии составления или уточнения проекта
производства работ. Повторные расчеты выполняет строительная организация. 10.4. Расчеты заносимости
траншеи в период строительства следует выполнять на основании измерений
параметров потока (уровень, глубина, скорость течения) непосредственно перед
началом или в период разработки траншеи. В отдельных случаях допускается расчет
этих параметров на основании краткосрочного гидрологического прогноза,
охватывающего период работы на подводном переходе. 10.5. Заносимость подводной
траншеи следует учитывать лишь при скоростях, превышающих неразмывающие
значения для данной крупности донных наносов в соответствии с таблицами
рекомендуемого приложения 4. Оценка форм транспорта наносов
при заносимости подводных траншей производится в соответствии с рекомендуемым приложением 11. 10.6. Неблагоприятные
гидрологические условия при разработке подводной траншеи и укладке трубопровода
в условиях интенсивного движения донных наносов следует учитывать увеличением
ширины траншеи на значение расчетного запаса на заносимость Db3. 10.7. Значение расчетного запаса
на заносимость (в метрах) следует определять для наиболее неблагоприятного
участка траншеи, на котором расход наносов имеет максимальное, а глубина
траншеи - минимальное значение. Запас на заносимость траншеи определяют по
формуле Db3=(qтtт)/hт=Cвtт, (28) где qт - удельная (на 1 м)
интенсивность отложения наносов в расчетном сечении траншеи, м3/сут;
tт - время поступления наносов в расчетное сечение
траншеи, сут; hт - глубина траншеи в расчетном поперечном сечении,
м; Cв - скорость смешения верхового откоса траншеи в
процессе отложения наносов, м/сут. 10.8.
При расчете запаса на заносимость Db3 по формуле (28) предъявляются следующие
требования к допустимой погрешности и способу определения величины qт в зависимости от
технологического параметра заносимости траншеи а=(qтtт)/w0 и параметра mотhт/b0, где mот, b0, w0 - соответственно
коэффициент заложения откоса, ширина по дну без учета заносимости и площадь
расчетного поперечного сечения траншеи (рекомендуемое приложение 10). При а£0,1 допускается определение qт расчетным способом для любых значений параметра mотhт/b0 если средняя скорость
течения на вертикали определена с относительной погрешностью не превышающей
0,1; при а£0,2 допускается определение qт расчетным способом для значений параметра формы траншеи меньше 0,8 и
при ограничении относительной погрешности значения средней скорости на
вертикали, принятой в расчете; при а£0,2, mотhт/b0>0,8, а также при а>0,2
к расчетным значениям величины qт следует вводить, коэффициент запаса, равный k=1+0,8-/qт, (29) где /qт - допустимая относительная
погрешность величины qт, определяемая по табл. 6 в
зависимости от технологического параметра заносимости а и параметра mотhт/b0. Таблица 6 Допустимая относительная
погрешность величины qт
10.9. Если допустимая
погрешность /qт=0,3, то величину qт целесообразно уточнить на
основе измерений параметров и скорости перемещения донных гряд или принять по
фактической заносимости траншеи, соответственно снизив коэффициент k до
1,3. Предельное значение технологического параметра заносимости траншеи a не
должно превышать 0,5. А£0,26, (30) где А - расчетное значение технологического
параметра заносимости траншеи (в пределах ширины русла), равное отношению
суммарного количества донных наносов Qт, откладывающихся в траншее в
единицу времени, к суммарной производительности грунторазрабатывающих машин Пр,
используемых одновременно на указанном выше участке (см. рекомендуемое приложение 10). Значение Qт
м3/сут определяют по данным удельной интенсивности отложения наносов
qтi, в пределах отдельных
участков длиной li и суммированием значений qтili по всей ширине русла: Qт=, (31) Для значений qтi
м3/(сут×м), полученных расчетным
способом по измеренным скоростям течения на вертикалях, предельное допустимое
значение технологического параметра заносимости А следует принимать не
более 0,26. Увеличение предельного значения технологического параметра
заносимости А до 0,32 допускается в случае более точного определения
величины Qт на основании непосредственных измерений высоты и
скорости перемещения донных гряд в русле реки или измерений фактической
заносимости траншей. 10.11. Проверку возможности
укладки подводного трубопровода способом протаскивания следует выполнять при
скоростях течения (средних на вертикалях на участке русла, сложенном
мелкозернистыми или среднезернистыми песками) не менее 0,7 - 0,8 м/с, исходя из
условия, что смещение верхового откоса траншеи (вследствие отложения наносов) Lв м за время укладки
трубопровода не превосходило бы допустимого значения, равного Lв.доп=b1-1,5, (32) где b1 - расстояние от
подошвы верхового откоса подводной траншеи до ее проектной оси, определяемое на
основании промеров глубин траншеи эхолотом по поперечникам непосредственно
перед укладкой трубопровода; 1,5 м - минимальный запас, учитывающий возможное
отклонение трубопровода в процессе его протаскивания от оси траншеи в сторону
верхового откоса. 10.12. Смещение верхового
откоса траншеи (в метрах) определяют для наиболее неблагоприятного сечения по
формуле Lв=(2qтмаксty)/hт, (33) где 2 - коэффициент, учитывающий возможное
увеличение интенсивности отложения наносов в траншее (по сравнению с
осредненным во времени значением) за интервал времени укладки вследствие
неравномерности расхода наносов; qтмакс - максимальное по фронту траншеи значение
интенсивности отложения наносов для вертикали с наибольшей скоростью на 1 м
длины, м3/сут; ty
- расчетное время укладки трубопровода, сут; hт - глубина траншеи в
расчетном сечении, м. Погрешности определения
расчетных параметров, входящих в выражение (33), для глубины траншеи не должны
превышать 0,1 hт, для времени укладки - 0,2 ty, для расчетной интенсивности отложения наносов в
траншее - 0,8 qт. 10.13. Укладку трубопровода
способом протаскивания допускается выполнить,
если технологический параметр заносимости траншей при укладке Ау=(qтty)/(b1hт) для измеренных значений b1 не превышает значений,
указанных в табл.
7. Таблица 7
10.14. При увеличении
точности определения qт на основании натурных
измерений с погрешностью, не превышающей 0,3 рассчитанных значений, укладка
трубопровода допускается при значениях технологического параметра Ау,
не превышающих значений, указанных в табл. 8. Таблица 8
10.15. Расчет удельной интенсивности отложения наносов в траншее -
расхода наносов qт м3/(сут×м) для песчаных наносов со
средним диаметром частиц до 0,5 мм, перемещающихся на расчетных вертикалях в
форме гряд при средних скоростях потока менее 1,5 м/с, следует выполнять по
формуле qт=16u5/H, (34) где v, H
-
соответственно средняя скорость в метрах на секунду и глубина потока в метрах
на расчетной вертикали в створе перехода до разработки траншеи. На рис. 13 приведены графики qт=f(u, H), построенные по формуле (34). Рис.
13. Номограмма для расчета qт по формуле (34). 10.16. При наличии фактических
данных о высоте донных гряд hг, перемещающихся в русле,
интенсивность отложения наносов в траншее в м3/(сут×м) определяется по формуле Формула (35) используется для наносов
любой крупности и скорости потока при грядовом движении наносов. При отсутствии данных о
высоте гряд величина hг м в формуле (35)
определяется по зависимостям
(3) или (4). Значения средней скорости
потока на расчетных вертикалях, входящие в формулы (34) и (35),
следует определять на основании натурных измерений или расчетным путем методами
Бернадского, Великанова или на основе типового графика колебания уровней воды с
помощью кривой расходов Q=f(H) и поперечного профиля дна
реки в расчетном створе. 10.17. Суммарный объем наносов
(в кубических метрах), откладывающихся в траншее по всей ширине русла в единицу
времени, определяется по формуле , (36) где li
- длина частных морфологически однородных участков русла вдоль фронта траншеи; qтi
- интенсивность отложения наносов на этих участках. Натурные методы определения зависимости траншей10.18. Для уточнения
результатов расчетов заносимости подводных траншей в ответственных случаях
следует применять натурные методы измерения расхода наносов, перемещающихся в
форме гряд, либо измерения фактического объема наносов, отложившихся в траншее.
В последнем случае перед разработкой проектной траншеи следует предусмотреть
устройство опытной поперечной прорези на участке русла с максимальной расчетной
интенсивностью заносимости. 10.19. Осредненный удельный
расход наносов (м3/(сут×м)), перемещающихся в форме
гряд, определяется по формуле , (37) где - средний по
продольнику коэффициент формы гряды; - средняя по
продольнику скорость перемещения гряд, м/сут; - средняя высота гряд
по продольнику, м. Входящие в формулу параметры
определяют на основании обработки батиграмм, полученных при многократных
промерах глубин эхолотом по постоянным продольникам в русле реки. 10.20. Среднюю скорость
перемещения гряд определяют из выражения , (38) где Тп - время между первым и
последующим промерами, сут; - смещение
характерных точек гряд (гребни, средние точки тылового откоса, подвалья) за время Тп; nг - число обработанных гряд на
продольнике. 10.21. Коэффициент формы
одиночной гряды определяют из выражения mг=Fг/(hг/lг), (39) где Fг - площадь гряды в масштабе
батиграммы, определяемая планиметрированием; lг - длина гряды (расстояние
между подвальями или гребнями двух смежных гряд) на батиграмме. Средний
коэффициент формы гряд равен , (40) где nг - число обработанных гряд. Ориентировочно допустимо
принимать =0,6. 10.22. При производстве
промерных работ необходимо учитывать следующие основные причины погрешностей
рассматриваемого метода: - смещение промерного судна
относительно створа при повторных промерах, определяемое качеством створов,
воздействием на судно поперечного
течения и ветра; - неравномерность движения
промерного судна по створу в интервале времени между двумя последовательными
засечками его местоположения; - несинхронность моментов
плановых засечек с моментами регистрации оперативных отметок на батиграммах; - недостаточные масштабы
записи на батиграммах и на плане засечек. 10.23. Для опознавания гряд
на последующих батиграммах следует проводить не менее трех серий промеров,
принимая интервал времени между второй и третьей сериями в 2 раза меньше
интервала между первой и второй сериями. Время между первой и второй сериями
следует принять на основе предварительного расчета равным половине периода
движения гряд: t=(tг/2)(lг /2Cг), (41) где Cг - определяется по
номограммам рекомендуемого приложения 5 в соответствии с зависимостью (5). 10.24. В каждой серии следует
выполнить не менее трех промеров по одному и тому же продольнику, определив
линейные координаты характерных точек гряд как средние значения. Интервалы времени между
оперативными отметками на батиграммах для всех промеров и серий следует
принимать равными 15-20 с. Геодезические засечки
положения промерного судна в моменты нанесения оперативных отметок на батиграммах
выполняют с интервалом 0,5-1 мин. Ошибка планового положения
засекаемых точек не должна превышать в масштабе плана ±1,5 мм. 10.25. Среднее смещение гряд
за время наблюдений
должно быть существенно больше ошибки, обусловленной погрешностями построения
плана засечек и измерения расстояний на плане засечек и на батиграммах.
Максимальные абсолютные значения указанной ошибки для отдельных гряд м в зависимости от
коэффициента масштаба плана засечек Ml и коэффициента масштаба
расстояний на батиграммах Mб приведены в табл. 9. Таблица 9 Значения при разных масштабах
плана засечек Ml;
При определении Cг по нескольким грядам
указанную выше среднюю погрешность следует принимать равной , (42) где определяют по табл. 9. 10.26. При промерах следует
стремиться к возможно более крупному горизонтальному масштабу на батиграмме за
счет уменьшения скорости промерного судна (движение его против течения), а
также используя максимальную скорость записи батиграмм. Масштаб Мб
следует по возможности сохранять одинаковым при всех сериях промеров. Величина
смещения гряд определяется после приведения сравниваемых батиграмм к общему
масштабу. 10.27. Удельный расход
наносов м3/сут (на 1 м ширины русла), откладывающихся в опытной
поперечной прорези или траншее, определяется путем сопоставления поперечных
профилей прорези (траншеи) на различные даты промеров по формуле qт=(lгhт)/Tп, (43) где Dlг - смещение характерной точки
верхового откоса траншеи (бровки или средней точки откоса траншеи) за время
между промерами, м; hт - глубина траншеи, м; Tп - время между промерами,
сут. 10.28. Промеры следует
выполнять по строго фиксированным поперечникам траншеи, либо по произвольным
близко расположенным
(через 10-15 м) поперечникам. При промерах по поперечникам необходимо иметь не
менее трех засечек местоположения промерного судна: выше и ниже траншеи (10-15
м за границами ее раскрытия) и в проектном створе. При обработке и совмещении
батиграмм разновременных промеров по фиксированным поперечным створам траншеи
необходимо установить идентичность этих створов. 10.29. Для определения
смещений верхового откоса траншеи по разновременным промерам произвольных ее
поперечников необходимо на плане засечек построить линию бровки верхового
откоса траншеи на соответствующие даты промеров. Смещение верхового откоса
определяют по смещению этой линии в направлении нормали к продольной оси
траншеи. Среднее смещение верхового
откоса траншеи между двумя соседними точками на линии определяют как среднее
арифметическое из соответствующих смещений в этих точках, измеренных по нормали
к оси траншеи. 10.30. Среднюю удельную
интенсивность отложения наносов в (м3/(сут×м)) на участке траншеи
длиной l определяют из выражения где - смещение верхового
откоса в точке i за время t; , - соответственно
глубина траншеи в i-той точке при первой и последней сериях промеров, м;
пт - число точек на участке длиной l. 10.31. Смещение верхового
откоса траншеи м должно превосходить
значение ошибки согласно табл. 9
(при определении величины qт для фиксированных
поперечников траншеи) и превосходить значение м при определении
величины qт по формуле (44). Смешение верхового откоса
траншеи определяют после приведения сравниваемых батиграмм к общему масштабу. Прогноз заносимости траншей на переходах, расположенных в нижних бьефах ГЭС10.32. Для составления
прогноза удельной интенсивности и объема отложения наносов в траншее на
переходах, расположенных в нижних бьефах ГЭС, необходимо иметь следующие
исходные данные: - график связи часовых
уровней и расходов воды H=f(Qч) для ветвей подъема и спада
волн попусков при режиме суточного регулирования за прогнозируемый период
производства строительных работ на переходе; - графики связи средних на
вертикали скоростей потока с уровнем при режиме регулирования за прогнозируемый
период для ветви подъема uн=f(Н) и спада uc=f(Н) волн попусков
ГЭС. - данные о распределении
часовых уровней воды за прогнозируемый период отдельно для ветвей подъема и
спада волн попусков ГЭС; - поперечный профиль русла
по створу перехода, полученный на основании русловой съемки; - сведения о неразмывающих
скоростях потока (см. рекомендуемое приложение 4); - данные о крупности и
составе донных наносов. 10.33.
Прогноз удельной интенсивности отложения наносов за час в расчетном створе
траншеи следует производить по формуле (34) или (35). При этом в правые части
этих формул в качестве сомножителя вводится коэффициент 0,04 для перевода
удельной интенсивности отложения наносов из (м3/(сут×м)) в (м3/(ч×м)). Расчет ведется для режимов
потока со значением скорости, превышающей неразмывающую в соответствии с
таблицами рекомендуемого приложения 4. 10.34.
Для прогноза объема отложения наносов в расчетном створе траншеи за период
строительства перехода из данных ряда о распределении часовых попусков с
соответствующими значениями уровней воды за прогнозируемый период отбираются
только случаи, при которых скорость потока превышает неразмывающую u>u0. Эти случаи группируются в частные интервалы уровней и времени их
стояния в часах отдельно для ветвей подъема и спада волн попусков ГЭС. По русловой съемке
(поперечному профилю дна) и кривой u=f(H) определяются значения
глубины и скорости потока в каждом интервале наполнения русла отдельно для
ветвей подъема и спада попусков. 10.35. Объем наносов,
поступающих в траншею за период ее разработки (на 1 м длины фронта траншеи),
следует определять по формуле W=Wп+Wс=(SqтiпdTiп+SqтiсdTiс), (45) где Wп и Wс - удельные объемы
отложения наносов в траншее за расчетный период соответственно для ветвей
подъема и спада волн попусков ГЭС, м3/м; qтiп, qтiс -
удельная интенсивность отложения наносов в траншее для i-того интервала
наполнения русла соответственно на ветвях подъема и спада, определяемая в
соответствии с п. 10.33 и 10.34 м3/(сут×м); dTiп, dTiс -
продолжительность i-того интервала наполнения русла за прогнозируемый
период соответственно на ветвях подъема и спада волн попусков, ч; 1/24 - переводной коэффициент
часов в сутки. УЧЕТ ДЕФОРМАЦИЙ БЕРЕГОВ НА ПОДВОДНЫХ ПЕРЕХОДАХ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ ЧЕРЕЗ ВОДОЕМЫ (ОЗЕРА И ВОДОХРАНИЛИЩА)11. ЗАДАЧИ, СОСТАВ И ОРГАНИЗАЦИЯ ИЗЫСКАНИЙ11.1. Состав и объем
изысканий, необходимых для обеспечения прогноза переформирований берегов
водоема и высотных обратимых деформаций береговых отмелей, а также для оценки
заносимости подводных траншей наносами, должны определяться с учетом размеров
водоема, изученности его гидрометеорологического режима, геологического
строения берегов и стадий их развития, степени интенсивности динамических
явлений в береговых зонах и на открытой акватории, возможности использования
материалов проектирования или опыта строительства и эксплуатации близлежащих к
проектируемой трассе существующих подводных трубопроводов. 11.2. Детальность и полноту
прогноза динамических явлений в береговых зонах участка водоема на заданный
срок службы подводного трубопровода уточняют последовательно на каждом из
этапов изысканий: предполевом, полевом и камеральном. 11.3. На предполевом этапе
изысканий выполняют следующие виды работ: - осуществляют сбор и
предварительный анализ материалов по топографии участка,
гидрометеорологическому режиму водоема, динамике береговой зоны, геологическому
строению и рельефу дна водоема и берегов, интенсивности переформировании
берегов; - выполняют
рекогносцировочные обследования участка, в задачу которых входят:
предварительный выбор вариантов размещения створов перехода, уточнение
геологического строения и стадий развития берегов, определение границ
затопления участка и интенсивности береговых процессов, оценка доступности
участка с воды и с суши для
обеспечения инженерных условий строительных работ, уточнение представлений о
хозяйственном использовании водоема и его береговой зоны, уточнение мест
размещения ближайших к участку перехода гидротехнических сооружений и зданий
различного назначения, выявление мест размещения опорной геодезической сети и
возможности привязки к ней створов и высотных отметок трубопровода,
предварительный выбор методики и определение объема полевых изысканий. 11.4.
Предполевой этап изысканий завершают подготовкой и оформлением следующих
материалов: - карты или детальной схемы
участка перехода (масштаб 1:10000-1:50000 в зависимости от ширины водной
преграды и протяженности участка вдоль оси водоема) с указанием мест размещения намечаемых створов
перехода трубопровода и границ распространения горных пород в обнажениях уступа
берега, типов береговых отмелей, состояния переформирований и высоты берегового
уступа, мест размещения гидротехнических сооружений и зданий различного
назначения, мест размещения опорной геодезической сети и пунктов наблюдения за
гидрометеорологическим режимом водоема: - поперечных профилей
водоема по предварительно намеченным створам переходов трубопроводов с
указанием грунтов и геологического строения дна водоема (при наличии
типографических и геологических съемок предыдущих лет); - поперечных профилей
створов берега с указанием их геологического строения, полученного по
обнажениям пород на уступах, и приближенных отметок возможных предельных
уровней воды; - краткой записки с
характеристикой участка и характеристикой гидрометеорологического режима
водоема, с обоснованием состава и объема полевых изысканий, с перечнем
требуемого оборудования и приборов для производства работ. Эти материалы передаются в комиссию,
которая принимает решение по предварительному выбору участка и створа перехода,
а также по проведению полевых изысканий. 11.5.
На этапе полевых изысканий выполняют следующие виды работ: - оборудуют пункты
наблюдений за уровнем воды, ветром и волнением; - закрепляют створы для
наблюдений за переформированием берега и высотными деформациями дна на
береговых отмелях (по 2-3 створа на каждом берегу); - выбирают и оборудуют створ
наблюдений за вдольбереговыми течениями и перемещениями наносов на береговой
отмели; (рекомендуемое приложение 17, рис. 43); - выбирают створ и
закрепляют 3-4 вертикали на открытой акватории водоема для наблюдений за
волнением, ветровыми и стоковыми течениями; - проводят регулярные (в
течение 1-2 месяцев) наблюдения за уровнем, ветром и волнением на береговых
временных пунктах; - проводят эпизодические
наблюдения за волнением и течениями в пределах открытой акватории водоема и в
зонах прибрежного мелководья при наиболее характерных направлениях ветра
различной скорости; - измеряют вдольбереговые
течения и перемещения наносов на береговых отмелях (по 10-15 измерений на
каждом из берегов водоема); - проводят 2-3 повторные
нивелировки надводного берега и промеры глубин от уреза до основания подводного
склона береговой отмели по створам наблюдений за переформированием берега; - отбирают пробы донных
наносов с различных точек береговой отмели, берегового склона или уступа берега
и с пляжа (7-10 проб с каждого створа); - осуществляют сбор
дополнительных материалов стационарных пунктов наблюдений Госкомгидромета и
пунктов наблюдений различных ведомств за отдельными элементами
гидрометеорологического режима участка водоема и динамическими явлениями в
береговой зоне; - выполняют обработку, обобщение
и анализ всех данных изысканий. 11.6. С
учетом конкретных геологических и гидрологических условий, а также
интенсивности береговых процессов отдельные виды работ, предусмотренные п. 11.5, допускается исключать из
состава полевых изысканий или выполнять в ограниченном объеме при
соответствующем обосновании нa предварительном этапе
изысканий и в ходе выполнения полевых работ. а. Наблюдения за
переформированием надводного берега не проводят в случаях, когда развитие
береговой зоны достигло стадии относительного динамического равновесия и
подводные склоны имеют уклоны порядка 0,005 и менее; береговой уступ сложен
скальными или полускальными породами; надводный берег защищен от волновых
воздействий устойчивыми во времени аккумулятивными формами (широкими пляжами и
береговым валом, косами, барами и др.). б. Наблюдения за волнением
на открытой акватории водоема и в его береговых зонах не проводят на участках
переходов трубопроводов, на которых высоты волн при штормовых ветрах редкой
повторяемости (1 раз в 10-20 лет) не превышают 1,0 м. в. Измерения стоковых и
ветровых течений не проводят, если их скорости в пределах открытой акватории и
в береговых зонах менее 0,2 м/с и если они не осложняют условий строительства и
эксплуатации подводных трубопроводов. г. Наблюдения за высотными
деформациями дна не проводят на участках, где имеются береговые отмели
абразионного типа, выработанные в трудноразмываемых грунтах (алевролиты, глины,
мергели и т.п.), которые не будут подвергаться размыву до отметок заложения
трубопровода в течение всего периода его эксплуатации. д. Измерения вдольбереговых
течений и вдольбереговых перемещений наносов исключают из программы работ на
участках водоемов, на которых не будет происходить заносимости прорезей за
период строительства перехода. 11.7. Этап полевых
исследований завершают обработкой данных наблюдений и анализом собранных
сведений по участку перехода трубопровода через водоем с оформлением следующих
материалов: - карт или схем участка
перехода с уточненной ситуацией, морфологией берегов и другими элементами,
перечисленными в п. 11.4; - совмещенных поперечных
профилей водоема по окончательно выбранным створам перехода трубопровода; - совмещенных профилей
разновременных съемок береговой зоны по данным повторных нивелировок и промеров
глубин с указанием их геологического строения, уровней воды и соответствующих
дат измерений; - таблиц и графиков
изменения во времени уровней воды, скоростей и направлений ветра, элементов
ветровых волн, скоростей и направлений течения в пункте регулярных наблюдений; - таблиц измеренных
скоростей вдольбереговых течений и расходов наносов на береговых отмелях со
сведениями об обусловивших их элементах режима; - таблиц или графиков
изменения элементов волн и характеристик течений по створу перехода
трубопровода при различных условиях режима водоема; - графиков зависимости высот
волн, скоростей течения и расходов наносов от определяющих факторов; - графиков связи уровней
воды и характеристик ветра (скоростей и направлений) на временных пунктах
участка перехода с аналогичными элементами на ближайших к участку перехода
пунктах стационарных наблюдений Госкомгидромета или других ведомственных
организаций; - таблиц или графиков,
характеризующих изменение уровней воды, ветра, волнения и течений в различных
зонах водоема за многолетний период, позволяющих определить расчетные значения
этих элементов режима в соответствии с требованиями обязательных (12-14,
18)
и рекомендуемых (15, 16, 19) приложений. Все перечисленные материалы
сопровождаются краткими записками, в которых указываются источники получения
сведений, методика измерений, количество и надежность данных, а также
высказываются соображения о влиянии каждого из основных элементов режима
водоема и динамических процессов на условия строительства и эксплуатацию
подводного перехода трубопровода. 11.8. На камеральном этапе
изысканий осуществляют окончательную обработку, анализ и обобщение всех
материалов, полученных на первом и втором этапах работ, устанавливают в
соответствии с требованиями обязательных (12-14, 18) и
рекомендуемых (15, 16, 19) приложений расчетные
значения и характеристики режима всех основных элементов (уровня воды, ветра,
волнения, стоковых и ветровых течений, вдольбереговых течений и др.), а также
выполняют расчеты и составляю прогнозы переформирования берега, высотных
деформаций дна и заносимости траншей. По материалам прогнозов составляют
профиль плановых деформаций берега и высотных обратимых деформаций дна по всему
створу перехода в пределах между местами размещения запорной аппаратуры на
обоих берегах водоема. 11.9. Для составления
прогнозов береговых переформирований высотных деформаций дна и заносимости
прорезей используют исходные материалы, указанные соответственно в разделах 13-15
и в рекомендуемых (16, 17, 19-21) и обязательном (18)
приложениях. 11.10. Все материалы
изысканий по участку перехода подводного трубопровода через водоем представляют
в сводном отчете, в котором освещаются следующие вопросы: - общая характеристика
участка водоема и участка перехода трубопровода; - гидроморфологическая и
геологическая характеристики берегов водоема на участке перехода; - характеристика элементов
режима уровня, ветра, волнения и течений, а также расчетные значения элементов
режима различной повторяемости; - характеристика береговых
переформирований и высотных деформаций дна; - характеристика
вдольбереговых перемещений наносов; - прогнозируемые значения
береговых переформирований и высотных деформаций дна; - проектный профиль
переформирований берегов и высотных обратимых деформаций на береговых отмелях и
по всему створу перехода; - расчеты заносимости
прорезей; - материалы наблюдений на
временных пунктах участка перехода и их сопоставление с данными наблюдении на
стационарных пунктах. В сводный отчет в виде
приложения включают дополнительные материалы, которые подтверждают
достоверность и надежность выводов и обоснований по проекту сооружения и
условиям строительства подводного перехода трубопровода через водоем. 11.11. В сводном отчете
приводятся также характеристики тех элементов режима и динамики береговой зоны,
по которым, в соответствии с п. 11.6, не проводились наблюдения на этане
полевых изысканий. Дается краткое обоснование принятого решения по сокращению
объема наблюдений и последующего анализа материалов. 12. ВЫБОР УЧАСТКА И СТВОРА ПОДВОДНОГО ПЕРЕХОДА12.1. Участок и створ
подводного магистрального перехода трубопровода через водоем выбирают с учетом
общего направления трассы магистрального трубопровода и с учетом размеров
водной преграды, морфологии и геологического строения берегов и дна водоема,
гидрометеорологического режима водоема и динамики береговой зоны, глубин и
рельефа дна. Изыскания и обоснование выбора участка и створа перехода
осуществляют поэтапно с учетом требований, изложенных в разделе 4 и
дополнительных требований или условий, которыми учитываются специфические
особенности внутренних водоемов. 12.2.
Створы переходов следует размещать на участках водоемов, которые
характеризуются: - возможно меньшей шириной
водоема при среднем уровне; - плавностью подводного и
надводного рельефа; - отсутствием оползневых,
просадочных и суффозионных явлений на береговых склонах; - возможно меньшими
деформациями надводного и подводного склонов берега; - возможно меньшими
вдольбереговыми перемещениями наносов; - преобладанием на трассе
перехода пород, доступных для разработки траншей и прорезей без
предварительного рыхления взрывами; - наличием глубин, доступных
для разработки подводной траншеи имеющимися у строительной организации
техническими средствами; - наличием удобных подъездов
к водоему и удобных площадок для производства монтажных работ недалеко от
берега; - наличием на берегах мест
для размещения информационных знаков ограждения хорошо видимых с акватории
водоема; - достаточной удаленностью
створа перехода от существующих гидротехнических сооружений и зданий различного
назначения. При выборе участка и створа
перехода следует учитывать также обеспечение возможно меньших нарушений
хозяйственного использования водоема и его береговой зоны как в процессе
строительства перехода, так и в период его эксплуатации. 12.3. Если береговые склоны
водоема имеют большую крутизну (20-70° и более) и высоту порядка нескольких
десятков или даже сотен метров, а на трассе перехода имеется залив, балка или
овраг, то створ перехода трубопровода целесообразно назначать по направлению от
устья залива вдоль одного из его берегов, по тальвегу балки или оврага, а далее
от водоема - по одному из склонов (оврага или балки) до его бровки. В пределах
склона оврага или балки при этом предусматривают противоэрозионную защиту
трубопровода. 12.4. Предварительные работы
по выбору участка перехода трубопровода через водоем, выполняемые на
предполевом этапе изысканий, завершают подготовкой материалов, указанных в п. 11.4.
Эти материалы передают на рассмотрение комиссии, которая принимает решение о
выборе одного, а в особо сложных случаях двух участков прокладки трассы
магистрального трубопровода через водоем. Окончательное решение о
размещении створа магистрального трубопровода принимают на основании
рассмотрения материалов полевых изысканий и расчетов с учетом требований п. 12.2. 13. ПРОГНОЗ ПЕРЕФОРМИРОВАНИЙ БЕРЕГАИсходные положения13.1. В основу прогноза
переформирования берегов водохранилищ, сложенных размываемыми породами,
положена следующая схема процесса. Под действием ветрового
волнения первоначальный подтопленный береговой склон теряет устойчивость и
разрушается. Из материала разрушения формируется пологая, постепенно
увеличивающаяся в ширину береговая отмель, в границах которой происходит
частичное рассеяние волновой энергии. Переформирование берега завершается,
когда отмель достигает предельной ширины Во, достаточной для
поглощения всей волновой энергии, способной разрушать береговой откос (рис. 14). Рис. 14. Схема конечной
стадии переформирования берега и его основные элементы. Wр -
объем разрушения; Wа - объем аккумуляции; ab
- криволинейная
часть профиля береговой отмели шириной ВН; bc - прямолинейная часть
профиля отмели шириной ВD; Во - ширина береговой отмели; H -
глубина размывающего действия волны при НПУ; D - сработка уровня воды
водохранилища; gн - угол наклона надводного
склона берега; gп - угол наклона внешнего
склона береговой отмели; Lб - значения смещения линии
берега. 13.2. Для прогноза береговых
переформирований необходимо иметь следующие материалы: - профиль берегового склона
в расчетном створе и сведения о его геологическом строении; - сведения о расположении
расчетного створа на плане водохранилища; - профили дна водохранилища,
ориентированные по четырем наветренным румбам и проходящие через расчетную
точку береговой зоны; - сведения о ветровом режиме
рассматриваемого района водохранилища; - сведения о режиме уровней
воды в водохранилище за безледоставный период. Определение расчетных характеристик ветра и волнения13.3. В качестве исходных
материалов для определения расчетных характеристик ветра на участке перехода
трубопровода через водоем следует использовать данные о повторяемости рW
ветров различных градаций скорости W по восьми румбам для
каждого месяца безледоставного периода, содержащиеся в Справочниках по климату
СССР, часть III (ветер). Из Справочника выбираются сведения о ветрах по
ближайшей к участку перехода метеостанции, с учетом класса ее открытости.
Следует выбирать наименее защищенные метеостанции, а поправку на защищенность
флюгера вводить в соответствии с указаниями Справочника. В сомнительных случаях
данные Справочника следует корректировать на основании наблюдений, специально
поставленных на участке перехода трубопровода через водоем. 13.4. Из приведенных в
Справочнике по климату CCСР сведений о повторяемости
ветра рW за каждый месяц следует
использовать данные по четырем наветренным румбам (см. рекомендуемое приложение 19,
рис. 46),
которые необходимо пересчитать на сезонные повторяемости рWс,
относящиеся ко всему безледоставному периоду продолжительностью m
полных пли неполных (первый и с последний) месяцев, по формуле рWс=, (46) где Nm
- продолжительность соответствующего полного или неполного месяца. Пример пересчета приведен в рекомендуемом приложении 19
и табл. 37, 38. 13.5. Для перехода от
ветрового режима водохранилищ к волновому режиму участка перехода трубопровода
для этого участка следует построить волновые характеристики по четырем
наветренным румбам, выражающие в графической фирме связь между скоростью ветра W и
высотой волны h на подходе к зоне прибрежного мелководья. Расчеты волновых
характеристик следует выполнять при расчетном уровне воды, равном НПУ,
используя методы, рекомендуемые для волн на конечной глубине СНиП
2.06.04-82, с учетом особенностей, которые могут возникнуть на
водохранилищах при редких колебаниях глубин по линии разгона волн. Пример построения волновых
характеристик приведен в рекомендуемом приложении 19, рис. 47. 13.6. По волновым
характеристикам береговой зоны в створе перехода (см. рекомендуемое приложение 19,
рис. 47)
и сведениям о сезонной повторяемости ветра (рекомендуемое приложение 19.
табл. 38)
следует определить обеспеченности высот волн P по каждому наветренному
румбу, относя таким образом, сезонные повторяемости скоростей ветра к
соответствующим высотам волн. Пример такого пересчета приведен в рекомендуемом приложении 19,
табл. 39. Поскольку
в табл.
39 повторяемости рWс и обеспеченности Р
относятся к интервалам Dh
различной величины, следует с помощью интерполяции обеспеченностей перейти к
более общим характеристикам волнения, причем интерполяция приобретает большую определенность, если оперировать с lgP.
Результат такой интерполяции и вычисление соответствующих повторяемостей р
для частного примера приведены в рекомендуемом приложении 19, табл. 40.
Обеспеченность больших высот волн малой повторяемости определяют путем
экстраполяции. 13.7. Получив для волн hi, повторяемость рir раздельно по четырем
наветренным румбам r, следует определить среднюю
годовую (точнее, среднюю за
безледоставный период) мощность этих волн
Ri, суммированную по румбам и отнесенную к
единице протяженности береговой линии. Эта мощность рассчитывается по формуле Ri=7,95Npircosar. (47) Здесь N -
суммарная продолжительность безледоставного периода в часах (N=); pir - повторяемость волн hi румба r в процентах; ar - угол, образованный лучом волны при
соответствующем румбе ветра и нормалью к береговой линии, в градусах. Суммарная средняя годовая
мощность всего диапазона высот волн равна Ri=7,95Npircosar. (48) В промежуточных расчетах для
их упрощения рекомендуется использовать относительные выражения среднегодовой
мощности: ri=pircosar; r=pircosar. Пример расчета относительных
мощностей ri, и r приведен в рекомендуемом приложении 19,
табл. 41.
На рис. 15
дан пример распределения относительной мощности ri по высоте волны и
интегральная кривая относительной мощности r. Рис. 15. Распределение относительной мощности по высоте волны ri и интегральная кривая относительной мощности r. 13.8. В качестве расчетной
высоты волны ho принимают высоту,
соответствующую поступлению к береговой отмели основной части (96-98%) волновой
энергии, ho снимают с интегральной
кривой относительной мощности волн (рис. 15). Установление профиля устойчивой береговой отмели и определение предельного смещения линии берега13.9. Профиль устойчивой
береговой отмели состоит из верхнего
криволинейного участка, простирающего: от уреза воды до глубины Н,
равной глубине размывающего действия расчетной волны ho, и прямолинейного участка, простирающегося от глубины
Н до глубины Н+D (см. рис. 14),
где D - сработка уровня водохранилища за безледоставный период, определяемая
по данным о режиме работы водохранилища. При совмещении оси х с
расчетным уровнем воды (обычно принимаемым равным НПУ), начала координат - с
точкой уреза при этом уровне, и при направлении оси у вертикально вниз
линию профиля криволинейного участка следует построить по уравнению x=ky2+(1/mп)y. (49) Протяженность криволинейного
участка ВH и прямолинейного участка ВD
следует вычислить по уравнениям: ВH=kH2+(1/mп)H (50) ВD=D[2kH+(1/mп)]. (51) Полную ширину устойчивой
береговой отмели Во принимают равной Во=ВH+ВD. Коэффициент k в уравнениях
(49)-(51) вычисляют по формуле k=(mп-mo)/(20mпmo), (52) где mп - уклон пляжа, уклон линии
профиля в точке уреза; mo
- уклон отмели, уклон линии профиля на условной глубине. Значения mп и mo следует определять исходя из фракционного состава
грунтов разрушаемого берегового склона. Фракции крупностью меньше 0,05 мм
следует исключать из рассмотрения. По среднему диаметру из 30 % наименее
крупных из оставшихся фракций следует определять уклон отмели mo, по среднему диаметру из 10% наиболее крупных
фракций - уклон пляжа - mп. Уклоны mп и mo для грунтов различной крупности приведены в табл. 10. Таблица 10
Глубину размывающего
действия волны H, входящую в формулы (50) и (51),
следует определять по графикам (рис. 16) в зависимости от высоты расчетной волны ho и крупности донных наносов на внешнем крае
береговой отмели. Рис. 16. Зависимость глубины
размывающего действия волны (Н м) от высоты волны (h м)
при различной крупности донных наносов (d мм). Уклон подводного берегового
склона tggп (см. рис. 14) рекомендуется принимать равным 0,5.
Уклон надводного берегового склона tggн не следует брать более
пологим, чем уклон берега в естественном состоянии. В предварительных расчетах
и при отсутствии надежных гидрогеологических материалов рекомендуется брать tggн (см. рис. 14)
при сыпучих легко размываемых грунтах равным 0,5, а при наличии прослоек из
связных и полускальных пород - 1,0. 13.10. Положение профиля
устойчивой отмели относительно начального берегового склона следует определять
путем графического совмещения этих профилей, как это показано на рис. 14,
выполненного с соблюдением условия Wа/Wр=c, (53) где Wа - объем аккумуляции; Wр -
объем разрушения начального берегового склона; c - коэффициент аккумуляции,
равный относительному содержанию в материале разрушения фракций d³0,05 мм. Предельное смешение линии
берега Lб следует принимать равным расстоянию между
положениями точек уреза на исходном профиле и на профиле, соответствующем
положению устойчивой береговой отмели. Пример построения профиля
устойчивой береговой отмели и определения по нему предельного смещения линии
берега Lб показан в рекомендуемом приложении 19, рис. 48. Определение размера смещения линии берега на заданный срок13.11. Расчет развития
переформирования берега во времени состоит в определении размера смешения
береговой линии Lбk, соответствующего заданному
сроку t лет, с одновременным установлением объемов
разрушения берегового склона Wрk
и аккумуляции Wаk
и соответствующей ширины береговой отмели Вk,
меньшей чем предельная ширина Во. Координаты профиля отмели Вk
рассчитываются по формулам (49)-(51), в правую часть которых
вводится коэффициент Вk/Во.
Задаваясь несколькими значениями Вk путем графического
совмещения находятся соответствующие значения Wрk
и Lбk. Пример таких совмещений
показан на рис.
50 рекомендуемого приложения 19. По полученным частным значениям
строится график связи Wрk
и Lб с Вk. Пример такого графика
показан на рис
49 рекомендуемого приложения 19. Интервал времени Dt, необходимый для того, чтобы ширина береговой отмели
увеличилась на величину DB=Вk+1+Вk,
а объем крушения берегового склона соответственно увеличился на величину DWрk=Wk+1-Wk, следует вычислять по формуле Dt=(eDW)/Rk, (54) где e - количество волновой
энергии, затрачиваемой на разрушение единицы объема породы берегового склона,
которое определяется по табл. 11, т/м2; Rk - средняя годовая мощность всех волн с учетом потерь энергии на отмели
шириной Вk. Величину Rk следует вычислять по формуле Rk=[1-(Вkho)/(Вohi)]. (55) Таблица 11
В промежуточных расчетах в
целях их сокращения следует использовать эту величину в относительном
выражении: rk=[1-(Вkho)/(Вohi)]. (56) В рекомендуемом приложении 19
приводится пример расчета развития береговых деформаций во времени (табл. 44).
Результат этого расчета в виде графика зависимости размера смещения береговой
линии Lб, и ширины отмели В от времени t
представлен на рис.
51 рекомендуемого приложения 19. С графика снимается значение
смещения линии берега на прогнозируемый период эксплуатации перехода
трубопровода через водохранилище, принимаемый равным 30 годам. 14. ОЦЕНКА ОБРАТИМЫХ ВЫСОТНЫХ ДЕФОРМАЦИЙ БЕРЕГОВОЙ ОТМЕЛИОбратимые высотные деформации в приурезовой зонеНаблюдениями должны быть
охвачены все характерные фазы гидрометеорологического режима водоема и
экстремальные условия по режиму уровня воды, ветра, волнения, ледяных
образований и другим явлениям. Общая продолжительность эпизодических наблюдений
должна составлять не менее 2 лет. Значения размыва и намыва дна следует
оценивать по сравнению с осредненными отметками поверхности зоны при среднем
положении уровня воды в водоеме, а наибольшую деформацию - по разности
экстремальных отметок поверхности пляжа и дна береговой отмели. 14.3.
Приближенные значения высотных деформаций в приурезовой зоне береговой отмели,
достигшей стадии относительного динамического равновесия и сложенной
преимущественно песками или мелкозернистыми слабосвязными породами, в условиях
действия волн высотой порядка 2,0-2,5 м допускается определять по данным табл. 12 с учетом средних уклонов
береговой отмели, грунтов дна и значений многолетних колебаний уровня за
безледоставный период. 14.4.
Высотные деформации в приурезовой зоне береговой отмели для участков водоема,
на которых высота штормовых волн не превышает 1,0-1,2 м, следует уменьшать в
1,5-2,0 раза по сравнению с данными табл. 12. Таблица 12 Высотные
деформации за безледоставный период, м
14.5. Для определения
значения размыва и намыва дна в приурезовой зоне при построении профиля
предельных размывов по створу перехода трубопровода значение деформаций,
полученное по табл.
12 в соответствии с п. 14.3 или 14.4, следует отсчитывать от
осредненных отметок дна. Высотные деформации центральной и внешней частей береговой отмели14.6. Высотные деформации
центральной и внешней частей береговой отмели, как и приурезовой зоны, при
любом составе грунтов и всех возможных диапазонах изменения характеристик
режима водоема для случаев, указанных в п. 14.2, следует определять по
данным натурных наблюдений, представленных в виде совмещенных профилей. По
совмещенным профилям оконтуривается призма деформаций, как показано на рис. 17. Рис. 17. Построение контура
высотных деформаций дна береговой отмели (вертикальные стрелки) по совмещенным
профилям в створе перехода трубопровода. 14.7.
Приближенные значения высотных деформаций береговой отмели, сложенной
преимущественно песками различной крупности, при сезонных (за безледоставный
период) колебаниях уровня до 0,5 м допускается принимать равными 0,5h1% в центральной части отмели
и 0,1h1% - на бровке отмели, где h1% - высота волны 1 %-ной
обеспеченности, измеренная на подходе к береговой отмели. 14.8. Для получения
приближенного контура призмы высотных деформаций дна по всему створу береговой
отмели, сложенной преимущественно песками, в условиях сезонных колебаний уровня
до 0,5 м необходимо высотные деформации в приурезовой зоне, определенные в
соответствии с требованиями п. 14.3 или 14.4, а также деформации в
центральной части и на бровке отмели, принятые в соответствии с требованиями п. 14.7,
отложить равными частями вниз и вверх от осредненной линии профиля. Через
верхние и нижние точки отложенных отрезков у уреза, в центральной части и на
бровке отмели провести оконтуривающие линии, как показано на рис. 18. Рис. 18. Построение контура
высотных деформаций дна береговой отмели (вертикальные стрелки) по осредненному
профилю створа перехода трубопровода по рассчитанным значениям деформации в
различных частях отмели. 1 - профиль дна при уровне,
близком к среднему уровню вод (СУВ); 2 - осредненный профиль дна; 3
- контур призмы деформаций; 4 - значения обратимых высотных деформаций: Dzд.у - у уреза, Dzд.ц»0,5h1% - в центральной части отмели. Dzд.в»0,1h1% - у всей отмели. Построение профиля предельных деформаций14.9. Профиль предельных
деформаций по створу перехода трубопровода через водоем строят по данным
прогноза переформирований берега, выполненных в соответствии с требованиями раздела 13
на 25-30-летний период, а также по данным высотных деформаций береговой отмели,
полученным в соответствии с требованиями раздела 14. 14.10. В качестве исходной
топографической основы для построения профиля предельных деформаций используют
профиль, полученный по данным полевых изысканий. На этот профиль на сновании
результатов расчета, в соответствии с требованиями раздела 13, наносят
прогнозируемое положение бровки и уступа берега, а также значения наибольших
высотных деформаций береговой отмели в пределах между прогнозируемым положением
уреза и существующим подводным склоном берега, как показано на рис. 19
пунктирной линией. Прогнозируемую призму аккумуляции грунтов, слагающих берег,
на профиль не наносят, поскольку место аккумуляции может быть использовано для размещения
материала для подсыпки дна при укладке трубопровода в период его строительства. Высотные обратимые деформации
дна, установленные в соответствии с требованиями п. 14.1-14.8, откладывают на
профиле относительно прогнозируемой линии дна береговой отмели при среднем
уровне воды и оконтуривают так, как показано на рис. 19 пунктирной линией со
стрелками. Проектирование срезки надводного уступа берега и заглубления дна
подводной прорези для укладки трубопровода осуществляют относительно линии
прогнозируемого (на 25-30 лет) смещения уступа берега и относительно нижнего
положения контура высотных обратимых деформаций дна, показанного на рис. 19
штрих-пунктирной линией со стрелками. Рис.
19 Профиль предельных плановых и высотных деформаций берега по створу перехода
трубопровода через водоем. 1 - исходный профиль; 2
- прогнозируемый профиль (на 30-летний период); 3 - контур предельных
высотных деформаций дна береговой отмели; Lб - прогнозируемое смещение
береговой линии (на 30 лет); Dzд.у, Dzд.ц, Dzд.в - прогнозируемые предельные
значения высотных обратимых деформаций у уреза, в центральной и внешней частях
береговой отмели соответственно. 14.11. Мероприятия по
стабилизации берега на участке перехода трубопровода через водоем
предусматривают в следующих случаях: - трубопровод не удается
заглубить по техническим причинам в соответствии с прогнозируемыми значениями
предельных деформаций береговой зоны; - сопротивляемость грунтов
берега волновым воздействиям существенно уменьшена в результате срезки уступа и
сооружения подводной прорези; - необходимо повышение
надежности работы трубопровода или удлинение периода его эксплуатации; - стоимость работ по
заглублению трубопровода до недеформируемых отметок профиля превышает стоимость
работ по защите берега от волновых воздействий. 14.12. Тип инженерной защиты
и протяженность участка креплений берега выбирают и обосновывают в соответствии
с требованиями имеющихся нормативных документов и правил, а также с учетом
геологического строения берега и гидрометеорологического режима водоема на
участке перехода трубопровода. На участках водохранилищ, находящихся в стадии
формирования, может предусматриваться создание путем намыва грунтов
искусственной береговой отмели шириной 100-200 м и уклоном дна около 0,01, а
также наброска из крупных камней в приурезовой зоне береговой отмели и пляжа.
Протяженность участка намыва искусственной береговой отмели и крепления
приурезовой зоны каменной наброской вдоль линии берега должна составлять 50-100
м в обе стороны от оси трубопровода. 15. РАСЧЕТ ВДОЛЬБЕРЕГОВОГО ПЕРЕМЕЩЕНИЯ И АККУМУЛЯЦИИ НАНОСОВ В ТРАНШЕЕ НА БЕРЕГОВОЙ ОТМЕЛИСредняя мутность воды15.1. Среднюю мутность воды
(кг/м3) в зоне береговой отмели, сложенной преимущественно песками,
в условиях волнения вычисляют по формуле rср=(0,27h3/2)/(wтHoB)2/3, (57) где wт - средневзвешенный показатель гидравлической
крупности с предельными размерами взвешенных частиц менее 0,2 мм при расчетном
значении средней глубины Но на береговой отмели, вычисляемый
по выражению wт=u1pd1+u2pd2+…+unpdn, (58) где pd1, pd2,
pdn - содержание (в долях
единиц) каждой фракции наносов диаметром менее 0,2 мм в грунтах дна береговой
отмели; u1, u2, un - гидравлическая крупность соответствующей фракции
наносов, определяемая по табл. 13. 15.2. В качестве величины В
принимают всю ширину береговой отмели, если вычисления перемещений наносов
определяют по расчетному значению высоты волны малой вероятности повторения в
режиме (1 раз в 5, 10, 20 или 50 лет); если расчеты перемещений наносов
выполняют по всему возможному диапазону изменений высот волн, то за В
принимают часть ширины береговой отмели, расположенную между урезом и линией
разбивания волн при Hр=1,3h1%. Влияние на значение мутности
донных наносов с размерами песчаных частиц более 0,2 мм и основные черты
морфологии береговых отмелей учитываются в формуле (57) размерным
коэффициентом, численно равным 0,27, если h1%, Hо и В выражены в
метрах, а гидравлическая крупность частиц u1, u2, un в формуле (58) - в метрах в секунду. Таблица 13 Гидравлическая крупность
частиц u×10-2 м/с
Распределение мутности воды по створу береговой отмели15.3. Распределение
относительных осредненных значений мутности rв/rср по ширине песчаной
береговой отмели в условиях преобладания плавного изменения скорости
вдольберегового течения в пределах между урезом и линией разбивания волн
следует определять по табл. 14 в зависимости от относительного
расстояния вертикалей b/В от уреза. Таблица 14
15.4. Среднюю мутность на
вертикалях у уреза, в случаях, когда место сосредоточенного разбивания волн
приурочено к бровке отмели или к ее центральной части и совмещено с зоной
напыщенных скоростей вдольберегового течения, принимают приближенно равной rв=(3¸6)rср, (59) а на вертикалях в зоне разбивания волн равной rв=(1,5¸2,0)rср. (60) Распределение мутности воды по вертикали15.5. Распределение мутности
воды по вертикали в зоне береговой отмели может значительно изменяться во время
штормов в зависимости от состава грунтов донных наносов. Распределение
относительной мутности воды по вертикали на различной относительной глубине z/H
для указанных случаев представлено в табл. 15, которой следует пользоваться
при отсутствии наблюдений мутности, но при наличии данных о составе грунтов на
береговой отмели. Таблица 15 Относительная мутность воды rz/rв
15.6. Относительное значение придонной мутности (0,10 м от дна) для
вертикалей береговой отмели В при отсутствии наблюдений допускается
вычислять по формуле rz=0,1
м/rв=(Hо+1,4)(b/В)1/3. (61) Расчет расхода наносов15.7.
Общий расход наносов Rт через створ береговой отмели, ориентированный по нормали к линии
берега, необходимо представлять в виде суммы двух расходов: расхода взвешенных Rвз и расхода донных наносов Rд, т.е. Rт=Rвз+Rд. (62) как произведение следующих параметров: Rвз=urсрF, (63) где u - средняя скорость
вдольберегового течения; rср - средняя мутность в створе
береговой отмели; F - площадь водного сечения
створа, равная произведению ширины береговой отмели В или ее части,
охваченной течением, на среднюю глубину Нo. 15.9. Параметры, входящие в
правую часть выражения
(63), необходимо вычислять для расчетных условий или для всего
возможного диапазона изменения определяющих факторов с использованием формул и
данных по морфологии береговой отмели: средней скорости вдольберегового течения
u - по формуле
(101) или (102)
в зависимости от общей ширины береговой отмели и с учетом формулы (104)
обязательного приложения 18; средней мутности rср - по формуле (57);
площади водного сечения F - по профилю створа. 15.10.
В случае если ширина береговой отмели В<100 м, расход взвешенных
наносов, кг/с, наряду с формулой (63) допускается определять по обобщенной формуле Rвз=0,23f(ah)exp[-(0,014В-0,5Hо)](HоВ)1/3/, (64) где h1% - высота волны 1 %-ной
обеспеченности на подходе к береговой линии, м; f(ah) - параметр, определяемый
по табл. 35
обязательного приложения 18; В и Но
- ширина береговой отмели и средняя глубина в ее пределах, м; wт - средневзвешенный
показатель гидравлической крупности донных грунтов, определяемый по формуле (58). 15.11. Расход донных наносов
через створ береговой отмели, сложенной преимущественно песками, необходимо
определять по табл.
16 в зависимости от расхода взвешенных наносов и высоты ветровых
волн, обусловливающих возникновение вдольберегового течения и приводящих к
взвешиванию грунтов отмели. Таблица 16
15.12. При малой
обеспеченности характеристик ветра и волнения вдольбереговые перемещения
наносов необходимо оценивать за периоды времени значительной продолжительности:
отдельный шторм различной силы, месяц, сезон или безледоставный период.
Продолжительность требуемого расчетного периода следует устанавливать исходя из
основных задач расчета. Для оценки заносимости прорези, например, в период
строительства перехода трубопровода продолжительность расчетного периода
следует принять равной 1-2 месяцам, а сроки установить по календарному плану
работ. 15.13. Для определения
вдольберегового перемещения наносов за период необходимо располагать следующими
сведениями: распределением повторяемости ветра различных градаций скорости
(через 2-3 м/с) по всем направлениям (по 16 или в крайнем случае по 8 румбам),
полученных в соответствии с требованиями обязательного приложения 13; значениями
высот волн h1%, и углов ah
на подходе к береговой отмели, полученными по требованиям обязательного приложения 14
для каждой градации скорости ветра по каждому из учитываемых румбов;
морфологическими характеристиками береговой отмели (Во, Hо, F),
фракционным составом грунтов дна. По этим данным, в соответствии с требованиями
п. 15.7-15.11,
вычисляются расходы взвешенных и донных наносов за секунду, и путем умножения
этих расходов на продолжительность действия ветра каждой градации скорости и
направления вычисляются значения перемещения наносов за расчетный период, как
показано в рекомендуемом приложении 20. Вычисленные значения
перемещения наносов суммируются вначале по каждому направлению действия ветра
по всем градациям его скорости, a затем по всем направлениям,
расположенным отдельно справа и слева от нормали к линии берега. На основании
полученных результатов расчета устанавливается величина и направление
преобладающего перемещения наносов, а также суммарное значение перемещения
наносов за расчетный период. 15.14. В случаях, когда
повторяемость ветров волноопасных направлений изменяется от года к году в 2-3
раза и более необходимо вычислять перемещения наносов за выбранный расчетный
период или сезон года для сооружения I и II класса капитальности не по
осредненным за многолетний период наблюдений данным о повторяемости ветров, а
по данным фактических повторяемостей ветра за расчетный период каждого года в
отдельности. По данным таких расчетов устанавливаются возможные предельные
значения перемещений наносов справа и слева от нормали к линии берега, а также
предельные результирующие значения. Эти данные используются для оценки
возможной наибольшей и наименьшей заносимости прорези или сооружения другого
типа за выбранный период времени. Распределение интенсивности вдольберегового перемещения наносов и их аккумуляции в траншее15.15.
Распределение интенсивности перемещения взвешенных и донных наносов в створе
береговой отмели, ориентированном по нормали к линии берега, в случае
отсутствия данных натурных измерений допускается оценивать по типовому
распределению относительных значений элементарных расходов (h=ruH), представленных в табл. 17. Таблица 17
15.16.
Распределение относительных значении аккумуляции наносов ci/cср в траншее, пересекающей береговую отмель и заканчивающейся у уреза,
следует принимать аналогично распределению по ширине береговой отмели
относительных значений элементарных расходов, т.е. определить по табл. 17. В траншее, имеющей поперечные
размеры порядка нескольких десятков метров, пересекающей береговую отмель
шириной 50-150 м и простирающейся в пределы суши, распределение относительных
значений аккумуляции наносов за период от одного до нескольких месяцев
необходимо принимать по табл. 18. Таблицей нельзя пользоваться для оценки
распределения аккумулирующихся наносов в траншеях, сооружаемых на широких
(более 200 м) береговых отмелях с малыми (менее 0,01) уклонами дна. Таблица 18
а. Определить количество
наносов, перемещаемых слева и справа от траншеи за одну декаду. Для этого общее
количество наносов за сезон или безледоставный период, вычисленное в
соответствии с требованиями п. 15.10-15.14, делят на число декад в сезоне
или в безледоставном периоде соответственно. б. Исключить из общего
количества наносов, перемещаемых через створ за декаду, часть мелкозернистых
наносов, которые не будут осаждаться в траншее в связи с малым значением
гидравлической крупности. К таким наносам следует относить частицы с размерами
менее 0,01 мм. Количество мелкозернистых наносов, исключаемых из рассмотрения,
следует принимать по табл. 19 в зависимости от процентного содержания
указанных частиц в составе грунтов донных наносов. Таблица 19
в. Учесть количество
аккумулирующихся в траншее наносов, которое следует принимать равным 10 %
общего расхода взвешенных и донных наносов за каждую декаду. г. Определить слон
аккумуляции за счет поступления в траншею донных наносов. Средний слой
аккумуляции наносов за декаду равен частному от деления объема донных наносов
на площадь траншеи, равную произведению ее длины на ширину в пределах береговой
отмели. Возможный наибольший слой аккумуляции донных наносов в траншее
принимается равным произведению значения среднего слоя аккумуляции на
наибольшее значение коэффициента (1,6 или 1,9), взятое по табл. 17 или табл. 18
в зависимости от расположения траншеи относительно уреза (см. п. 15.15
и 15.16). д. Определить период
заносимости траншеи донными наносами путем деления глубины прорези на возможный
наибольший слой аккумуляции наносов. Если при этом выясняется, что только за
счет аккумуляции донных наносов траншея может быть занесена в течение 1-3
декад, то последующий расчет аккумуляции наносов следует считать
нецелесообразным. В противном случае необходимо учесть аккумуляцию взвешенных
наносов. е. Определить количество
взвешенных наносов с частицами крупностью более 0,01 мм. Для этого из общего
количества наносов, перемещаемых вдоль берега за расчетный период (декаду),
вычитают количество донных и взвешенных наносов с размерами частиц менее 0,01
мм. Из оставшегося количества взвешенных наносов в траншее аккумулируется тем
большее количество, чем больше преобладающий диаметр взвешенных наносов и чем
больше глубина траншеи hт по сравнению с глубиной на береговой
отмели Но. Относительное значение аккумуляции наносов
возрастает с уменьшением высоты ветровых волн, проходящих над траншеей.
Количество аккумулирующихся в траншее взвешенных наносов с размерами частиц
более 0,01 мм определяется по значениям коэффициентов аккумуляции c (табл. 20) как произведение Rвзc Таблица 20 Коэффициент аккумуляции
взвешенных наносов c.
ж. Определить слой
аккумуляции в траншее за счет поступления взвешенных наносов. Средний слой
аккумуляции наносов за декаду принимается равным частному or
деления объема наносов на площадь траншеи, а возможное наибольшее значение -
путем умножения среднего слоя аккумуляции на коэффициент 1,6 для траншей,
пересекающих береговую отмель и заканчивающихся у уреза, и на коэффициент 1,9
для траншей, врезанных глубоко в сушу. з. Определить общий слой
аккумуляции за декаду в результате поступления в траншею донных и взвешенных
наносов. Если общий слой аккумуляции наносов оказывается существенно меньше,
чем глубина траншеи, то к полученному слою аккумуляции за первую декаду
добавляется возможный наибольший слой аккумуляции за счет поступления донных
наносов во вторую декаду. По полученному слою вновь определяется относительная
глубина траншеи hт2/Ho,
новое значение коэффициента аккумуляции c по табл. 20 и слой аккумуляции
взвешенных наносов за вторую декаду. Операции вычисления
повторяются до тех пор, пока общий слой аккумуляции донных и взвешенных наносов
в зоне наиболее интенсивного выпадения окажется равным глубине траншеи.
Продолжительность периода занесения траншей принимается равной числу декад, в
течение которых суммарный слой аккумуляции наносов сравнивается с глубиной
траншеи. Пример расчета заносимости траншеи приведен в рекомендуемом приложении 21. ПРИЛОЖЕНИЕ 1
Рекомендуемое ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ТИПОВ РУСЛОВОГО ПРОЦЕССА1. Переходы трубопроводов
через реки относятся к категории пассивных гидротехнических сооружений, не
предназначенных и не способных влиять на естественный ход развития руслового
процесса. Подводные трубопроводы сами подвержены влиянию русловых деформаций и
требуют учета характера, темпов, интенсивности и возможного диапазона плановых
и глубинных деформаций за период их эксплуатации. Все возможные схемы
деформации русла равнинных рек, включающие начальную, промежуточную и конечную
стадии развития, в соответствии с гидроморфологической теорией руслового
процесса ГГИ следует подразделять на семь типов, представленных на рис. 20. Направление стрелки на рис. 20
показывает предполагаемое увеличение транспортирующей способности потока. На
рисунке указаны также основные морфометрические измерители различных типов
руслового процесса. 2. Ленточногрядовый тип
руслового процесса распространен на средних и малых равнинных реках, сложенных
из средних и крупных песков, а также на горно-предгорных участках русел и в
отдельных протоках крупных равнинных рек. Как самостоятельный тип руслового
процесса на равнинных реках встречается редко. Ленточногрядовый тип
характеризуется наличием в реке одиночных, занимающих всю ширину русла песчаных
гряд, длина которых составляет 6-8 ширин русла, а высота 0,15-0,30 глубины в
плёсе при высоких уровнях воды менее 10%-ной обеспеченности. Основные деформации русла при
ленточногрядовом типе руслового процесса выражаются в сползании ленточных гряд
по реке, вызывающем местные периодические повышения дна в фиксированном створе
при прохождении гребней и понижение отметок при прохождении подвалий ленточных
гряд. Скорость активного сползания
в период высоких паводков при отсутствии вторичных гряд на поверхности ленточных
гряд определяется по зависимости (5) или номограммам рекомендуемого приложения 5. При движении ленточных гряд
за счет более мелких вторичных гряд на их поверхности скорость сползания гряд
определяется по зависимости
(7) или номограммам рекомендуемого приложения 6. Ленточные гряды легко
выявляются при продольном эхолотировании русла, а также при аэровизуальной
разведке и на аэрофотоснимках меженного русла. Ленточногрядовый тип
руслового процесса характеризуется отсутствием поймы. Плановые деформации
невелики и носят нерегулярный локальный характер. 3. Побочневый тип руслового
процесса широко распространен на равнинных и горно-предгорных реках, сложенных
из наносов любой крупности. Встречается в основном как самостоятельный тип
руслового процесса на прямолинейных и слабоизвилистых участках рек, а также в
отдельных рукавах пойменной многорукавности и в меандрирующих руслах. Побочневый тип руслового
процесса характеризуется наличием в русле крупных, занимающих в меженный период
большую часть ширины русла частично обсыхающих в межень отмелей, расположенных
в русле в шахматном порядке. В период паводков побочни покрываются водой и
русло приобретает прямолинейный вид. Обсохшие побочни и межень придают руслу
извилистость в плане. Пониженные затопленные части в местах перегиба русла
между побочнями образуют перекаты. Плесы в русле располагаются против выпуклых
краев побочней. Русловые деформации при этом
типе сводятся к сползанию побочней вниз по течению и в основном приурочены к
периодам половодий и паводков. Высота побочней составляет 0,3Hпл, где Hпл - глубина в плесе, соответствующая
уровню бровок русла, а длина побочней составляет 4+8В. где В -
средняя ширина русла между бровками. Рис. 20. Типы руслового
процесса и их основные измерители. 1 - ленточногрядовый тип (lг -
шаг ленточных гряд); 2 - побочневый тип (lпб - шаг побочней); 3 -
ограниченное меандрирование (lи - шаг излучины, a0 -
угол разворота излучины); 4 - свободное меандрирование (Sи - длина излучины, lи -
шаг излучины, a1 - угол входа, a2 -
угол выхода, a0=a1+a2);
5 - незавершенное меандрирование; 1а - русловая многорукавность; 5а
- пойменная многорукавность. Расчет скорости перемещения
побочней следует производить по формуле (7) или номограммам рекомендуемого приложения 6
и соответствии с разделом
5 настоящих Норм. Побочный тип руслового
процесса характеризуется отсутствием поймы. Плановые деформации берегов
несущественны и не имеют закономерного характера. 4. Ограниченное меандрирование
- тип руслового процесса, распространенный чаще на равнинных реках,
характеризуется извилистым руслом с углом разворота до 120°, сохраняющем
извилистость и во время паводка. Свободное развитие плановых деформаций русла
при этом типе руслового процесса ограничено наличием неразмываемых склонов
долины. Осевая линия русла имеет форму, близкую к синусоиде. Морфологическое
строение русла такое же, как при побочневом типе. По обоим берегам реки за
границами русла между неразмываемыми склонами долины располагаются чередующиеся
обособленные пойменные массивы. Подмыв этих массивов с верховой стороны и
наращивание с низовой приводят к сползанию излучин без существенного изменения
их плановых очертаний. Внутрирусловые деформации
такие же, как при побочневом типе руслового процесса. В межень перекаты
размываются, а в половодье намываются. В плесах размыв приурочен к половодью, а
намыв - к межени. На пойме следы меандрирования отсутствуют. Деформации поймы
выражаются в постоянном нарастании пойменного массива в высоту в результате
отложения наилка, образуемого преимущественно взвешенными наносами. Наиболее
мощный наилок образуется в верховой части пойменного массива, в результате чего
она повышена. В низовой части массива образуются береговые валы. Скорость сползания излучин
при ограниченном меандрировании следует определять по совмещению материалов
разновременных съемок русла подобно изложенному в разделе 6 настоящих Норм. 5. Свободное меандрирование -
самый распространенный тип русловою процесса на равнинных реках. Этот тип
руслового процесса обычно развивается в широких речных долинах, склоны которых
не ограничивают свободное развитие плановых деформаций излучин. Характеризуется
наличием одного действующего русла, механизм переформирования которого
значительно сложнее и разнообразнее, чем при ограниченном меандрировании,
сохраняющем при сползании свои размеры и плановые очертания. В начальной стадии развития
при углах разворота менее 90° излучины свободного меандрирования
сползают вниз по течению по схеме ограниченного меандрирования, но при этом
меняя (увеличивая) угол разворота. По мере увеличения угла разворота сползание
излучины замедляется, но меняется ее форма (излучины вытягиваются). При углах
разворота, близких к 140°. происходит разделение
плесовой ложбины и нарушение плановой симметрии в результате преимущественного
развития одного из плесов. Развитие излучин завершается сближением подмываемых
берегов выше и ниже расположенных смежных излучин, прорывом образовавшегося
между ними перешейка. После прорыва возникает новая излучина, что нарушает
нормальный ход развития смежных излучин. Скорости деформации в зоне прорыва
возрастают. Общий ход глубинных
деформаций в многолетнем разрезе подчинен характеру развития плановых
деформаций. Глубинные деформации в пределах фиксированных плановых очертаний
русла носят сезонный характер и сводятся к нарастанию перекатов и размыву
плесов в период половодья и к противоположным деформациям в период межени. При
наличии базального слоя им определяется предельная возможная глубина размыва
плесов, а выступы коренных пород в русле, останцы на пойме и другие виды
проявления ограничивающего фактора в плане, вносят существенные изменения в
циклическую закономерность развития плановых деформаций при свободном
меандрировании. При свободном меандрировании
пойменный массив образуется несколькими излучинами. Рельеф поймы имеет
гривистый характер. Гривы представляют собой образованные в ходе плановых
деформаций береговые валы. В пойме свободно меандрирующей реки сохраняются
староречья - изолированные от действующего русла отпавшие излучины, находящиеся
в различной стадии отмирания, соединяющиеся с рекой при высоком уровне воды. Оценку интенсивности плановых
деформаций русла при свободном меандрировании следует производить в
соответствии с разделом 6 настоящих Норм. 6. Незавершенное
меандрирование является разновидностью свободного меандрирования.
Характеризуется наличием спрямляющего протока излучин. Возникает в сильно
затапливаемых во время половодья поймах, сложенных из легкоразмываемых пород
грунта. В начальной стадии своего
развития излучины развиваются по схеме свободного меандрирования, но задолго до
завершения полного цикла развития излучины на пойме возникает и развивается
спрямляющая протока, со временем превращающаяся в главное русло. По мере
развития спрямляющей протоки деформации главного русла ослабевают. Спрямляющая протока
разрабатывается постепенно (на малых реках быстрее, на больших медленнее). По
ней происходит интенсивное движение наносных скоплений в виде ленточных гряд,
осередков, побочней. После того как спрямляющая, протока примет основную часть
расхода воды в реке, прежнее главное русло начинает превращаться в старицу и
цикл возобновляется. Этот тип руслового процесса
легко опознается на картах и аэрофотоснимках участков рек достаточно большого
протяжения по наличию спрямляющих проток, находящихся в разных стадиях
развития. Прогноз деформаций следует
производить путем совмещения плановых материалов разных лет съемок. 7. Пойменная многорукавность
является дальнейшим развитием и усложнением незавершенного меандрирования, при
котором спрямляются не отдельные излучины, а группы смежных излучин.
Характеризуется широкой поймой. Русловой процесс на каждом спрямляющем протоке
может развиваться по законам любого типа руслового процесса. Выделить основное
русло среди многочисленных протоков часто невозможно. Острова, образованные
протоками представляют участки поймы, обладающие значительной плановой
устойчивостью. Деформации русла реки в целом
сводятся к медленному развитию спрямляющих протоков, их отмиранию и
возобновлению, сопровождающемуся перераспределением расхода воды между
рукавами. Спрямлениями, как правило оказываются охвачены не отдельные излучины,
как при незавершенном меандрировании, а группы смежных излучин. При пойменной многорукавности
в период половодий и паводков на пойме возникают вторичные протоки, не
связанные с развитием незавершенного меандрирования. При анализе материалов
участков русел с пойменной многорукавностью требуется фрагментирование всех
основных протоков по типам руслового процесса. 8. Осередковый тип руслового
процесса (русловая многорукавность) распространен на участках равнинных и
горно-предгорных рек с интенсивным движением донных наносов в условиях перегрузки
потока наносами. Характеризуется распластанным руслом, по которому в наволочный
период перемещаются мезоформы: осередки, побочни и ленточные гряды, в разной
степени обсыхающие в период межени и создающие многорукавный облик русла. В периоды межени и низких
половодий на участках русел, сложенных из мелких наносов, происходят
внутрирусловые плановые деформации контуров мезоформ. На горно-предгорных реках
и равнинных реках с крупным и средним составом аллювия мезоформы сохраняют свою
форму, управляя меженным потоком. При такой разновидности осередкового типа и
редко повторяющихся больших паводках поверхность мезоформ может закрепляться
растительностью и осередки превращаются в осередки-острова. Если поток
характеризуется большим содержанием взвешенных наносов, в результате их
осаждения на спаде половодий и паводков и интенсивного отложения наилка
осередки становятся менее подвижными. Однако при высоких паводках редкой
повторяемости, особенно на горных реках, эти образования приходят в движение. Динамические характеристики
осередков, в большинстве случаев могут быть оценены в соответствии с п. 5.8 и 5.9
настоящих Норм. 9. На участках русел
горно-предгорных рек кроме ленточногрядового побочневого и осередкового типов
руслового процесса распространены типы свойственные только горным рекам: горная
пойменная многорукавность (пойменное блуждание) и долинное блуждание (рис. 21).
Эти типы руслового процесса распространены в расширениях горных долин или при
выходе рек из горной в предгорную зону. 10. На дне горной речной
долины выделяются два характерных элемента рельефа: пойма и паводочное русло.
Характерным признаком поймы является наличие растительности, стабильность
которой определяется стабильностью субстрата (грунта) на поверхности поймы и
определяется режимом стока воды и гидравликой паводочного русла. В отличие от
рельефа равнинных пойм, формирующихся в результате постоянного перемещения
русла в плане, пойменный рельеф горных рек является результатом прерывисто
происходящих во времени процессов стабилизации, зарастания и временной
консервации подвижных русловых образований. Рис. 21. Типы руслового
процесса на участках рек горно-предгорной зоны. а - горная пойменная
многорукавность (пойменное блуждание); б - долинное блуждание. Наводочное русло горной реки
представляет собой часть долины, систематически затапливаемую паводками средней
повторяемости в пределах которой регулярно, каждый год во время паводков
поддерживается процесс переотложения наносов. Растительность в пределах
паводочного русла горно-предгорных рек практически отсутствует. Паводочное
русло представляет собой широкое галечно-валунное пространство, в значительной
степени обсыхающее в меженный период. Рельеф обсохшего паводочного
русла горной реки состоит из пологих гравийно-галечных россыпей - мезоформ.
Мезоформы наволочного русла выступают как формы регулярного перемещения
наносов. Частично или целиком обсыхая в межень, они обусловливают извилистость
и разветвленность русла в плане. 11. При установившемся режиме
течения русловой процесс на горных реках при значениях относительной гладкости
потока H/d>15 выражается
перемещением русловых мезо- и микроформ. В условиях колебаний водности
установившиеся формы транспорта наносов периодически перестраиваются. На реках
горно-предгорных зон с присущей им неравномерностью режима стока воды в
многолетнем разрезе и внутри года инерционность русловых образований сравнительно
невелика. Подвижные структуры, оставленные высокими (редкими и выдающимися)
паводками, резко перестраиваются только такими же паводками, повторяющимися 1
раз в 20-30 лет. В относительно маловодные периоды продолжительностью 3-10 лет
подвижные крупные формы частично зарастают и превращаются в пойменные
пространства. В промежутке времени между редкими паводками транспорт наносов
осуществляется на уровне структур меньших порядков. При описанной
многопорядковой структуре руслового рельефа функционирование каждого порядка
форм связано с соответствующим диапазоном расходов воды, а процесс в целом в
многолетием и внутригодовом разрезе воспринимается как блуждание русла реки по
пойме или долине, соответствующее типу горной пойменной многорукавности (на
средних горных реках) или долинному блужданию (на малых горных реках). В обоих случаях вероятность
появления максимальных глубин, наблюдаемых на участке при данной морфологии
русла за 20-30 лет, одинакова для любого поперечного створа горной поймы или
долины. ПРИЛОЖЕНИЕ 2
Рекомендуемое СХЕМЫ РАСПРЕДЕЛЕНИЯ ОСНОВНЫХ ТИПОВ РЕЧНЫХ РУСЕЛ НА ТЕРРИТОРИИ СССРРис. 22 Схема распределения
основных типов речных русел в Европейской территории СССР и Западной Сибири. 1 - свободное меандрирование;
2 - ограниченное меандрирование; 3 - немеандрирующее русло; 4 - разветвленное
русло. Рис. 23. Схема распределения
основных типов речных русел на территории Средней Азии. Усл. обозначения см. на рис. 22. Рис. 24. Схема
распределения основных типов речных русел на территории Кавказа. Усл. обозначения см.
на рис 22. Рис. 25. Схема распределения
основных типов речных русел на территории Среднего Урала и Приуралья. 1 - свободное меандрирование;
2 - ограниченное меандрирование; 3 - немеандрирующее русло; 4 - русловая
многорукавность. Рис. 26. Схема распределения
основных типов речных русел на территории Верхне-Волжского района ETC. 1 - свободное меандрирование;
2 - незавершенное меандрирование; 3 - пойменная
многорукавность; 4 - побочневое русло; 5 - осередковый тип (русловая
многорукавность); 6 - каналы и канализированные русла. ПРИЛОЖЕНИЕ 3
Рекомендуемое ПРИМЕР ВЫБОРА СТВОРА С МИНИМАЛЬНЫМ ОБЪЕМОМ ПОДВОДНЫХ ЗЕМЛЯНЫХ РАБОТНа основании совмещения
поперечных профилей по плану русловой съемки участка реки выбрать створ
перехода с минимальным объемом подводных земляных работ при следующих исходных
данных: уровень воды 5 %-ной обеспеченности - 18,7 м; средний рабочий уровень
10,1 м; наружный диаметр трубопровода с изоляционными и балластным покрытиями Dт=1,2 м; ориентировочные
значения параметров подводной траншеи: ширина по дну b0=5 м, коэффициент заложения
откосов mот=3. Рис. 27. Прогнозируемый
профиль размыва русла по совмещенным поперечникам. 4, 6-8 - совмещенные поперечные
профили русла реки на участке русловой съемки. 1. Строим совмещенные
поперечные профили указанного участка реки в соответствии с указаниями п. 9.3
настоящих Норм. 2. Определяем сезонную
деформацию русла за счет переформирования донных гряд по формуле (27) Dг=0,13(18,7-10,1)=1,1
м. 3. Строим прогнозируемый
профиль размыва русла (рис. 27). 4. Из всех совмещенных
профилей выбираем створы 4, 6, 7 и 8, очертания которых наиболее близки к
очертанию прогнозируемого профиля. 5. Определяем постоянную для
всех профилей величину, зависящую от диаметра трубопровода и параметров
траншеи: b0/(2mот)+Dт+0,5=5/(2×3)+1,7=2,5 м. 6. На всех указанных выше
профилях ширину русла по среднему рабочему уровню разбиваем вертикалями на
одинаковое число равных (исключая последний) участков. В данном примере профили
разбиты на 14 участков по 100 м. Для каждого профиля находим
превышение отметок дна над линией прогнозируемого размыва на соответствующих
вертикалях Dzi, а также значения Dzi+2,5 и (Dzi+2,5)2. Результаты суммируем (табл. 21). Таблица 21
Профиль 7, для которого
указанная сумма имеет минимальное значение, является оптимальным. ПРИЛОЖЕНИЕ 4
Рекомендуемое ТАБЛИЦЫ ЗНАЧЕНИЙ НЕРАЗМЫВАЮЩИХ СКОРОСТЕЙ ПОТОКАТаблица 22 Значения неразмывающей скорости потока для
песка, м/с
|